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The results of the basic jh.dter theory originally devised
in 1994 and published as N. A. C. A. Technical Report
No. 496 are presented in a simpler and more complete
form convenient for further studies. The paper attempts
to facilitate the judgment oj jh.dter problems by a syste-
matic survey oj the theoretical efects of the various param-
eters. A large number of experiments were conducted on
cantilever wings, with and without ailerons, in the
A? A. C. A. high-speed w-no? tunnel for the purpose of
verijying the theory and to study its adaptability to three-
dimensiomd problems. The experiments included studies
on wing taper ratios, nacelles, attachd$oats, and external
bracings. The essential effects in the transition to the
three-dimensional problem huve been established. Oj
particular interest is the existence oj specijic jilutter modes
as distinguished jrom ordinmy rnbration modes. On the
basis oj the concepts introduced, results that are apparently
paradoxical could logically be brought into conformity
with the theory. In fact, it is shoum that there exists a
rather remarkable agreement between theoretical and
experimental results. A simple method is presented for
numerical calculations of the flutter speed by routine
operations, requiring no rejerence to the theory. Appli-
cation is made to a complete numerical example. The
matter of identifying possible types of$utter in an airplane
and of determining the parameters is briefly discussed.
A section treating the subject of forced rnbrations of a
wing in an air stream and the question oj air dumping
in its relation to ftutter is included.

INTRODUCTION

The theory of flutter.-The problem of flutter is
passing through a period of rapid development. Full
cognizance is taken of the value of the theory; a simple
or an empirical understanding of this problem is not
available and could, at best, be of value only to the
investigator. An exact treatment of the basic flutter
problem in two-dimensional flow, involving the im-
portant functions .F and. Q relating to the air forces,
was given by Theodorsen in 1934. (See reference 1.)

These functions are
functions; they have
by Cicala (reference

simple combinations of Bessel
been rederived in related form
2) in 1935, by Kassner and

Fingado (reference 3) in 1936, and also by Kussner
(reference 4) in 1936, who pointed out the identity of
the functions. At about this time, Garrick (reference 5)
ak.o established a check on the generaI functions F and
C) by comparing them with expressions by Wagner,
Glauert, and von K6rm6n and Burgers for special cases.

The system of equations as given in the original
paper is . .

(A) L+;~B+ffC+3D+$E+P~~+XG

()-
–2 a+; ~C(k)Z=O

@) .~+i;~+j~+jf~+BL+ kM+:K;c(k)z=o

where A, B, C, etc., are given on page 10 of reference 1.

and (table 1) ~
C(k) =F(~) +iG(k)

Putting
~= ~ei(.t+yo)

~= ~Oej(.~+pl)

h=hei (~~%)
where

kv@=—
b

the determinant of the coefficients of q, L%, and ho
becomes

~aahi-?.. Rafl+iIap Rah~iIah

K~2 R~.+iIba ~~5+i1@ R&iIbh

Rc&iIc. R@-W@ ~ch+i~ch

where the R’s and I’s are lieted in the appendix.
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This determinant put equal to zero contains two simul-
taneous equations, the solutiori of which determines X
and I/k from which the (unlmowns) flutter velocity and
flutter frequency are obtained. Only the diagonal
terms with bars contain the quantity X. All terms
contain or are functions of Ilk.

The work of numerous investigators, notably Becker
and Foppl, has show-n that the structural friction is
mainly a function of amplitude, not of frequency.
The structural friction can be described by a force in
phase with the velocity but of a magnitude proportional
to the restoring force. With each restoring-force
term, say aC., there will be a friction term ia 9. L, in

which ga is the damping coefficient. The net result is
very simply that the restoring-force terms aC., 13C~,
and hCh have been replaced by terms of the form CYO.
(l+ig=), /3G~(l+ig~), hcfi(l+ig.). These friction coef-
ficients occur only in the diagonal 1 terms of the deter-
minant.

Technical flutter problems and the flutter param-
eters. —Expe~ental evidence, some of which is pre-
sented later, has been accumulated which indicates
that, in the two-dimensional problem, the flutter speed
can be closely predicted from the theory if the para-
meters are given with accuracy. (In fact, it seems that
in some cases the flutter speed can be used to determine
some parameters more precisely than by a direct
method.) In the two-dimensional problem of flexure-
torsion-aileron flutter, about a dozen different quantities
are required to calculate the flutter speed. The
determination of these parameters requires technical
skill and experience and is perhaps the most diilicult
step in the solution of the flutter problem. A knowledge
of the functional dependency of’ the flutter speed on
each parameter is essential in order to obtain su.fiicient
accuracy in the determination of the important ones
and to prevent waste of time on those of less influence.
This need is partly the purpose of the material given in
this paper.

One of the problems in connection with an actual
airplane is the identification of the combination of
vibration modes that may cause flutter- In regard
to wing flutter, in the case. of flexure-torsion, the situa-
tion is fairly clear. It will be shown that normally the
most important parameter is the center-of-gravity
location. This constant can be obtained with consider-
able accuracy in the design stage. An accurate value
of this parameter can also be experimentally obtained
as the “dynamic” torsion axis, that is, the axis around
which the wing, owing to the low bending frequency,
oscillates when put into torsional resonance. The
location of the (static) torsional stiffaess axis is much
more diflicult to calculate or to determine experimentally -
but fortunately, as will be observed, its effect on the
flutter velocity is small.

The internal damping coefficients are, moreover, of
fairly small influence in flexure-torsion flutter; these

parameters are also fairly d.iiiicult to obtain. On the
whole, however, it may be said that this case of
flutter can be fairly well handled.

Another important case, that of the combination
flexure-aileron, was - shown by the original study
(reference 1) to be an essentially different type of
flutter from flexure-torsion. Its primary characteristic
is that, normally, the flutter is limited to a range of
speeds. Below and above the extremes of this speed
range there is aerodynamic stabtity, A reduction of
the static moment of the aileron with respect to the
hinge (balancing) reduces the range; that is, the lower
limit is raised and the upper limit is lowered. Damping
in the structure is found to have the same general effect.
Sui%cient internal friction will, in fact, completely
eliminate the danger of flutter, as will also complete
ma& balance or the proper combination of both.
The structural friction of a wing system, although not
readily predictable, can be obtained by a ground test.

In regard to the tail assembly, the difficulty is some-
what greater since it m~y not be easy to iilentif y the
most dangerous combination or to predict or even to
measure the necessary parameters, including thci
structural damping. It therefore seems that certain
empirical or” semiempirical aids will be required and
that it will be necessary, for a time at least, to resort
to flight-test methods as a &al assurance against tail
flutter.

The transition to the three-dimensional case of actual
flutter is quite complex. It is necessary to consider am
aerod~amic span effect (which fortunately is very
small, see reference 6); the variation of the parameters
along the span; the possibility of higher-order deflec-
tion modes; and, in certain cases, fractional span effects,
as for partial ailerons. The most promising manner
of attack on such problems is by means of the two-
dimensional treatment with the introduction of certain
weight functions and average parameters in conjunc-
tion with a study of representative models of reason-
able simplicity, followed by a c~stallization of the
collected experience into generally applicable serni-
empirical correction factors. The present paper makes
initial studies with this purpose in mind.

It is realized that, for high values of the flutter speed,
a correction must be made for the effect of compressi-
bility. In the first order, this effect is due to a change
in the slope of the lift curve. The air forces in the
steady case are known to be increased approximately

in the ratio 1~~~ where M is the Mach number.
Consequently, a decrease in the flutter speed, roughly
as (1 —M)’/4, is expected. This correction, although
small through the usual flight range, becomes appreci -

able for speeds near sound speed. Until experimental

verification is available, such correction is preferable

to none and should be applied for high-speed airplanes.

(See footnote 2, p. 9, for det~ils.)
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A straightforward scheme is pre-Content of papero—
sented in the first section for routine calculation of the
flutter speeds in the twodimensional types; case 1,
flexure-torsion; case 2, flexure-aileron; and case 3,
torsion-aileron; and, in the three-degrees-of-freedom
type, flexure-torsion-aileron. A numerical example,
referring to a modern large airplane, is included.

The second section deals with a survey of the effect
of the flutter parameters on the critical velocity.
The effect of changing the parameters within certain
practical limits in cases 1, 2, and 3 is shown by a num-
ber of charts.

The discussion in the third section deals with the
transition to a three-dimensional case, showing how a
“representative)’ two-dimensional wing may be used
to give the essential results. Both uniform and tapered
cantilever wings are included. The question of the
probable occurrence of higher-order bending modes in
flutter is also discussed. The effects of “friction” and
“coupling” are especially pronounced in higher-order
flutter.

It is pointed out that the deflection mode occurring
in flutter is quite d~erent from that of the static
condition and that the lowest bending frequency
involved in flutter is greater than that of the lowest
ordinary vibration mode. A new concept of flutter,
that the mode arising in flutter is such that the flutter
speed is a minimum, is then introduced. In other
words, if all primary variables including friction could
be included in the analysis, the actual mode would be
determined from all possible modes as the one giving
the minimum critical speed. This concept is useful in
explaining certain otherwise paradoxical, experimental
facts. The extreme difficulty of a direct analytic
attack on the general case, even if all the physical
parameters were specified, justifies the adapting of the
two-dimensional treatment supplemented by empirical
information obtained on actual wings. In fact, as will
later be shown, the corrections are small.

Almost 100 separate experiments were conducted
in the 8-foot high-speed tunnel. The fourth section
deals with the experimental tests and results. About
one-half of these tests pertain to flutter of wings in
flexure-torsion; the rest pertain to aileron flutter.
Cantilever wings of aluminum and of built-up wood
construction were used. The tests were performed on
a conveniently large scale, most of the wings having a
chord of 1 foot and a sp?n of about 7 feet. The air
speeds ranged from 50 to about 300 miles per hour.
A number of safety devices had to be employed to
prevent the ruin of the tunnel equipment.

A section is included showing the theoretical effects
of the air damping on the forced vibrations of a two-
dimensional wing system. This study leads to a more
comprehensive understanding of the flutter condition,
since it studies not only the critical speed but also the
approach to this speed. A number of figures are pre-
sented that show the nature of the response curves in
both one and two degrees of freedom. It is perhaps

407300041—8

worth mentioning that von Schlippe (reference 7) has
smplo yed an experimental flight method for deter-
mining the critical flutter speed, which is based upon
the use of an impressed alternating exciting force.
The practical value of experiments of this nature is
yet somewhat doubtful since the flutter usually comes
m rather explosively. In any case, the theoretical
results are of interest because they indicate the critical
frequency as well as the growth of the maximum
response as the critical speed is approached.

METHOD FOR ROUTINE CALCULATION OF FLUTTER
SPEED

The calculation of the flutter speed can be reduced
to a routine procedure by the following scheme. Noth-
ing more involved arises than the calculation of the
numerical values of double and triple determinants.

Given are a maximum of seven original parameters
C,raz, a, x., rbz, Zp, c, from which are formed the 18 coJl-
stants A=,, Ad, A@l, Ad2, etc., defined as follows:

()
A=,=;*+ ;+iz’

(. )
Ad= ~–a

AB,=T;–;
X8 T,

)
2 T7+(c–a)(;–~

‘@*=h+-9TJ
Am=$T,+T,o)

A,l=~–’a

()
B.l=~–~+(c–a) ~–~ (=A~J

( )
Ba2=; p–T1–;T, .

.

Bf11=~2-$T3

BPZ= —& TdT1l

BB=$(T,– T4T,J

B~l=:–;T1

C=,=~–a(=AJ

C=*= 1

ofl,=~– ~T,(=Bh,)

q,= – :T,

Cfl,=o

Ch,=:+l
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These constants are obtained from the original varia-
bles and from the T table (table 2) given at the end of
the report.

Another set of quantities l?.., .l&, etc., a be
needed; their expressions are as follows:

R&= –(&-~

r+?
These six quantities are derived from the constants

already given and from two additional quantities F and
G, which are functions of lJk. The quantity I/k is,
in reality, the independent variable in the problem.
The quantities F and G occur in the forms 2F, 2F/W,
and 2G/k; their values are given in table 1 for diilerent
values of l/k. la order to facihtate the calculation of
these quantities, the parts depending on l/k are given
in tables 3 and 4.

Additional constants involved are the frequencies
flaj Q5, and $1~,defined un~er the scheme for each case,
and three damping constants g., g~, smd gfi. Generally
all these constants are not simultaneously needed.
The four cases will next be solved.

Case l.—The problem is given by two quadratic
equations, for convenience referred to as the “real”
and the “imaginary’> equations. The coefficients of
each are given in the calculation scheme presented in
the following section. The coefficient of the first term
in each equation involves the constants g. and gb, the
coefficients of internal friction or structural damping,
which are given as original constants. The coefficient
of the second term of each equation involves the g’s
and the R’s and I’s, ‘just defined. The constant term
in each of the equations is obtained by the schematic
arrangement shown in the calcula~ion scheme; it is
made up from certain constants AI, B1, Cl, and D1
together with the quantities 2F, 2F/l&, and 2GJk. The
quantities Al, Bl, C,, and D1 are simple determinants
built up from the constants Al, etc.

The coefficients of the two equations must be calcu-
lated for a fixed value of l/k; these coefficients are then

substituted into the equations and the solution, that
is, the value of X, is found. The real equation usually
has two solutions? and the imaginary equation usually
has one. The values of X, or preferably of ~~ are
then plotted against lJk, and the procedure is repeated
until continuous curves representing the two equations
are obtained. (Attained judgment or the knowledge
of the solution of similar cases may considerably reduce
the labor involved because it is then possible to choose
reasonable values of l/k at the start. For wings and
ailerons, I/k is usually less than 5, very often around
1 or 2.) The point of intersection of the two curves
represents the flutter point. Read off the values of
X and l/k. The flutter speed is then given by the
expression

T.wab 1 1
.=TFFB

Case 2.—The coefficient of the first term in each of
the two quadratic equations again involves the con-
stants of internal friction ge and gfi. The coefficient of
the second terms is built up as in case 1, The constant
term is built up likewise. Proceed as outlined for
case 1. The critical speed is then

———
.

.=”:;4; ‘

where l/k and X are the values at the intersection point
of the curves representing the real and the imagimuy
equations, respectively. There are usually two critical
speeds. .

Case 3.—Case 3 requires a more laborious calculation
of the constant terms; otherwise, the procedure is the
same as for cases 1 and 2. The flutter speed is given by

~=wab 1 1
-~z~

Three degrees of freedom.—The case of three degrees
of freedom requires the solution of two third-degree
equations in X. The constants of the first, the second,
and the third terms are readily recognized as containing
only quantities already used under cases 1, 2, and 3,
The expressions for the constant terms of the two
equations, DE and Dr, involve three-row determinants
but can be obtained by straightforward calculations
for each value of I/k. The point or points of inter-
section of the two curves representing the equations
are again representative of the critical speed, which is
given by

\ “=yi&
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CALCULATION SCHEME

Case 1 (h, a).—

Real equation:

Coefficient of X2: flJ2=(l –ghg=)

Coefficient of X: $l,(Baa-gJJ +%(R.,-9~1.,)

Constant: M,R=A,+B,~+Cl~~

Imaginmy equation: 1

Coefficient of X2: L?hfla(gh+ga)

Coefficient of X: flh(Batigti+_lJ +&(R.,9ti+1~,)

i )constant: Mlr= ~ Dl+ Cl~–B,2F

A= -& &
1 CalChl

Aa, –(*+a)
“= c=, 1 + (%–a) ~ ‘*+a) &

c,=– ; ‘*+a) $ – $’ y (++:)
a’ I= A~l—A=2 – (++a)

Chl—c.’ 1

Aa2 A~l
“=- C.’ G,,

Q== 1

0
n~= : ‘~

r=’

()
x= ’~’C“2

KU

r=cdab 1 1
..7 ~ ~

Case 2 (p, h) ,—
Real equation:

Coefficient of X2: Q&(l-gB9J

Coefficient of X: fl~(B.,-gP.I,J +%(R,P-9,16B)

constant: ‘2R=A’+z’i+@’+B’i)%+c’%
Imaginnry equation:

Coe5cient of X2: $J4h(gP+9;)

Coefficient of X: $2~(R~~gB+IJ +%(R,P9,+Ih~)

i NOtOtht Whenthefrictionzoeilkicntsg arezero,a factorI/k can be canceledout
of all termsin all imaginaryequationa.

D,=-~~1

~,=1

()
Qp= : ‘Tb’

()
x=: ~ 2u

#J 1 1
–~z~

Case 3 (a, J.-

Real equation:

Coefficient of X2: $2=!J~(l-gagfl)

Coefficient of X: fl.(R~~-gJbJ +fip(l?oa-gbraa)

( -Ip .Constant: M3’=~+~3-&+ BS+B3P, ~

)
+(c3+a3;%:

[maginary equation:

Coefficient of X2: $la$2~(ge+9J

Coefficient of X: $&(R,Bg.+I,B) +QB(RamgB+I.a)

constant: “’=w’+~b+(c’+w%

-(B3+E;)2F]

A., A~l
‘3= BeI BB1

Aal 493/ Ad A8,
~= – B., B831– Ba2 BP
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c?.= 1

Three degrees of freedom with friction.—

Real equation:

Coefficient of X’: %~~fih(l ‘g&9–%3gh–ghd

Imaginary equation:

Coefbient of X’: ~.~b~hti.+gfl+gh+g.gbgh)

Coefficient of X: Q.(MJ+g=MzR) +QB(M~+gWIR) +Q,(M31+9hM3E)

k[=q-y( 1)]Constant: D1=~ U+ Gp+ T+TP k – S’+S~ 2F
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– (++a) 4 &

.
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‘= $?E%I+E%H
Aa2 A~ Ahl

v= — Ba2 Bm B~l
Cd Cm ohl

Note that five of the determinants occurring in the
expressions for T and ~ occur also in the expressions
for S’ and ~.

fl==l

NUMERiCAL EXAMPLE

The following example refers to a modern large
airplane. The parameters, which were furnished by
the manufacturer, are:

K= ().25 T.2=0.25

a= —O.4 c=O.6

X==0.2 Xp=o

T~2=0.0012

A verbal description of the representative parameters
used in the example is: wing density, u, about 2.5
pounds per square foot per chord length (in ft);
stiflness-axis location, 30 percent of the chord from the
leading edge; center-of-gravity location, 40 percent of
the chord from the leading edge; aileron length, one-
fifth of the total chord; balanced aileron (center of
gravity of aileron at hinge axis, Z6=O). (The structural
damping coefficients ga, g~: and gh d be kept zero,
corresponding to a safety factor.) It is not necessary
to specify the chord length 2b and the torsional fre-
quency U. until the final step. The following fre-
quency ratios, however, are speciiied:

()
~h

2 1.—
~. ‘x

()

f!? 2=:
. ~h

That is, the torsional frequency is four times the bend-
ing frequency and the aileron frequency is 1.22 times
the bending frequency. The constants from which are
composed all the determinants in the calculation
scheme are tabulated as follows:

A&l. $?s B.l=o. 0!2374 Cd=l.2
B.i= .04209 cd= 1

API= :02274 BP,= .007028 c#l= .02222
AP2= .22679 B#2= .021177 C.815 .14229
/i:F1: :0744 B#s= .01651

BM = .02222 %=!.0

i -(+)=-O.l
#=o.w57 ,

.

The equations are written explicitly for I/k= 1, that
is, 2GJk= —0.2006, 2P= 1.0788, 2FJk2= 1.0788.

Case 1 (flexure-torsion).—

Real equation:
The coeilicjent of X2 is

&x4xl=;

The coefficient of Xis

– –1.285–0.12593)+1 (–5.0+0.2006)=–5.15213;(

The constants
A,=4.985
B,=–O.125
0,=0.7
D1=–3.3

Hence the constant term is

M,R=4.985+ (–0.125) (–0.2006)
+0.7(1.0788)=5.76524

The real equation is then

~X’-5.l52l3X+5.76524=O

Imaginary equation:
The coeilicient of X is

~(0.9–0.07703)+ 1(1.0788)=1.28454

The constant term M,r is

–3.3+0.7(–0.2006)– (–0.125)(1.0788)= –3.30557

The imaginary equation is then

1.28454X–3.30557=0

The roots of the real equation are X=1.187 and
19.421, and the root of the imaginary equation is
X=2.573, or

@?=l.089, 4.407, and 1.604

These values of ~~ are plotted against l/kin figure 1,
The curves traced by plotting the roots are shown in the
figure. The intersection is at ~~=1.594, l/k=2.46.
The flutter speed is then

~bu.= 1.542bu=
V=%%.594
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In the present example, the chord 2b is 12 feet and O.
is 90 (corresponding to a torsional frequency of 859
cycles per minute); buti is then 540 feet per second or

I I
o I 34

l~k

FIGUREl.—Caao1. Numericalexample.
Tho roots~~ of the real and theimagi-
naryequationsagainstIlk.

6

4

%

2

0 I z 3
I/k

FIGURE2.—Cese2. Numerical
eXamPle.The roots TX of the
real and the imaginaryequa-
tionsagainstl/k.

about 368 miles per hour. Hence the flutter speed is,
for this case, 567 miles per hour.z

Case 2 (flexure aileron).—

Real equation:
The coefficient of X2 is

:X O.0012X1=0.0018

The coefficient of X is

0.0018 (–5+0.2006)+1(– 0.007028+0.020470)=
0.004803

ZTho compressihiIitycorrection:Let the calculatedflutterspeedfor the incom.
prwible fluidbe ofand let the correspondingspeedfor the compressiblefluidbe o.
Donoto@ by MI mrdo./c by M., wherec is the velocityofsormd. Therr(seeIntro-
duction)

‘2& ‘MS
or,on solvbrgforMA

Forerample,withoi=5t37m.ph., M;=5417/7do=0.74t?,M.=0~650,and o.=494m. ph.
Note that the emmple given refersto sealevel; at altitude, the exampleshorddbe
hasodon anothervalueof Kand an appropriatevalueof the velocity of somrd.

109

The constants
A2=0.034601
~,=–O.08255
~2=0.008SlR
B2=–0.016510
C,=–O.024980
D2=–O.1O258

The constant term M2R= —0.07322.
The real equation is then

0.0018P+ 0.004803X–O.07322=0

Imaginary equation:
The coefficient of X is

0.0018 X1.0788+1(0.021177+0.0003184)=0.023437

The constant term M2’= –0.088554
The imaginary equation is then

0.023437X–0.088554=0

The roots of the real equation are X=5.182 and
—7.85 and the root of the imaginary equation is X=
3.778 or (for the positive roots) &!?=2.276 and 1.944.
These values of ~~ are plotted against l/kin figure 2.
The curves traced by the roots are shown in the figure.
Since no intersection exists, this case is stable.

Case 3 (torsion-aileron),—

Real equation:
The coefficient of .X? is

3 -=0.00045
l%X .

The coefficient of X is

1(–0.007028+0.020470) +0.00045 (–1.285–0.12593)=
0.012807

The constants
&= O.008468 C,=–O.003129
A,=–O.O2111O ~=–O.004241
B,=o.000799 ~,=–O.026964
~=0.002090 D,=–o.001474

The constant term M3R= —0.021 173 ‘

The real equation is then-
0.00045Z+0.012807X–O.021173=0

Imaginary equation:
The coefficient of X is

(0.021177 +0.0003184) +0.00045 (0.9–0.07703)
=0.021865

The constant term M3’= –0.030076
The imaginary equation is then

0.021865X–O.030076=0
The roots of the real equation are X= 1.567 and –30.03

and the root of the imaginary equation is X=1.375
or (for the positive roots) ~~= 1.252 and 1.173.
These values f?r the TX are plotted against l/k in
figure 3. The curve traced by the roots is shown in the
figure. Sincenointersection exists, this case is also stable.

Three degrees of freedom (flexure-torsion-aileron).—

Real equation:
The coefficient of 2P is

lxO.00045X~=0.0001125



-. — —x ——2-..A-4 —-. . . ——.———.

110 REPORT NO. 685—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

The coefficient of X? is
0.00045 (–4.7994)+0.0001125 (–1.41093)

+~(0.013442)=0.001042
The coefficient of X is

1(–0.07322) +0.00045 (5.76524) +X(–O-021173)
=–0.07592

The constants are
R=–O.032848 T= O.017042

~= 0.077092 ~=0.028790
S=–O.004381 D= O.1O3485

3=–0.000344 ~=0.017720

The constant term DR=0.094635
The real equation is then
0.0001125~+0.001042~–O.07592X+0.094635=0

Imaginary equation:
The coefficient of X? is
0.00045 (1.0788) +0.0001125 (0.82297) +?4(0-021495)

=0.005952
The coefficient of X is
1(–0.088554)+0.00045 (–3.30557)+%(–0 .030076)

=–0.097561
The constant term Dr=0.11711
The imaginary equation is then

0.005952~–0.097561X+ 0.1171=0

The positive roots of the real equation are X= I.270
and 21.0 and the roots of the imaginary equation are

1.302 and 15.08, or ~~=1.126 and 4.58, and 1.141

and 3.883. These values of &? are plotted against
l/k in figure 4. The curves traced by the roots against
l/k are shown in the figure. The intersection is at

d~=l.06, l/k= O.875. Hence

v=% X2 X~tma=0.826tma

I?or 2b=12 feet and o.r==90, the flutter speed is 304
miles per hour..

These examples have been selected from several
listed under the last part of the following section, to
which the reader may refer for other examples, includ-
ing the case of an unbalanced aileron.

THEORETICAL SURVEY OF THE EFFECT OF THE
FLUTTER PARAMETERS

The purpose of this section is the study of the effect
on the critical speed of the various independent varia-
bles. Although the theory in itself permits the solution
of any particular case without difficulty, it is somewhat
dMcult to obtain a perspective of the effects of the
parameters. Because of the many vafiables, this survey
has been limited to the magnitudes and the ranges of
most practical interest. It is realized that the effect of
increasing or decreasing a certain parameter is depend-
ent on the values chosen for the others. As a mathe-
matical experiment, it is possible to change one variable
and to keep all the others constant. With reference to
practical problems, however, the change of one param-

eter is usually accompanied by unavoidable changes
in several of the others. This fact must be kept in
mind when actual or proposed changes intended to
increase the flutter speed of airplanes are considered.
This discussion is intended to give only the salient
facts; the charts contain the complete data.

CASE1 (FLExUnE-TOnS1ON)

The flutter speed for case 1 is plotted in the coefficient
form v/b~a. In the following graphs, the frequency
ratio ~ Ij/% is generally used as abscissa and the critical
flutter coefficient v/bw~,as ordinate.

The graphs under each of the following sections of
case 1 are arranged in order of decreasing values of ~,

I I I I

3

1

0 f.i

‘mR

4

FIGURE3.—Cese3. N_uerical ex-
ample. The roots~X of thereal
and the imaginnrr equetions
againstIfk.

I/k

FIGURE4.—Threedcgrcw of free-
dom. Numeriealexample. The
roots TX of the real and tho
imaginarycqrrationsogainstIlk.

starting with K= 1/2 (lightest wings) and ending with
K= 1/.20 (hea~est). The range of K for presentiday
airplanes is approximately K= 1/3 to K= 1/15. The
graphs are further arranged in order of increasing
values of a, starting with the smallest values of a
(stiffness axis in the most forward location). In most
cases, the radius of gyration is kept at a fixed value
T=2= 1/4.

Effect of center of gravity z=.—The effect of & on
flutter speed is given in graph I–A. It maybe observed
that there is usually a decrease in the critical speed as
the frequency ratio wfi/% is increased from zero and
that the curves tend to a minimum near the frequency
ratio Wfil~a= 1. There are cases, however, in which
the minimum critical speed lies at w?I/W.= O. The
transition takes place for a certain small value of G.
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(a)K=%: u= -0.4;z.=0stablq z.=0.1 stablq 0D)b@a=l.38. f.b).=% a=–O.% 2.=0 stablw0D@@m=l.12.
(d) K=H a=–O.A za=Ostablq rJD/&=I.94.

(C) .=x; U=-0.2; UD/bU.=0.913.

(f) K=H ll=-O.Z UDb@a=l.12.
I

(e) .=M Q=-O.Z UD/f&=l.37.
$) X=M;.=-04 . ; z,Y=Ostablq ODlbw.=2.24.

(h) .=x; a=–O.~ ODfw.=LE3. (1 .=x; @=-l).% OD/fWa=l.~.

GraphI-A (a-i).—Theeffectofz.; the fluttercoeffidentsgairrstthefrequencyrstfo; r.2=1/4. Case1 (h.al.
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(J) K=% c=–IW DD/~.=2.$ z.=IJ, s~t.$ at or~ma~ 6.9. (k) .==~; a= -0.% Vrljbw.=1.l?.
o) x=}S a=–O.Z OD/bWa=l.45.

{

m) K=Ho; a= -0.~ vD/bw.=3.64.
(n) .=)io; a=–O.3;OD/bu.=2.5.
(P) K=fiO;a=–O.~ UD@da=5.0.

0) x=HO;0=-0.2;UD/bua=2.05.
q) K=NO;a=-O.3;vn/bu.=3.64.

GrephI-A (j-q)-The effectofz.; the fluttereoe5cient againstthefrequeneyretie;r.2=1/4. Case1 (h,a).
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w%
(r) x=xo;a=–0.ZOD/bw.=2.8S.
(t) x=)fo; U=-0.45; 0D/b@.=5.0.

(S)x=>$il=-o.4xlJD/bw=3.54.
(II)x=~O;a=–O..t~oD]bu.=7.O7.

GraphI-A(r-u).-The cffcctofr.; the flutterme5cientagaimt thefrequencyratiqr.2=l/4. Cesel(h, a).
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a+xd

(8) .=%0; (~)’-o. (b) .=Ho;p)’+u.

GraphI-B.-The effectof thestitin& mk; the flutterwefficientagaimtthe @nter*f-~avity lomtion;r#=l/4. Crsel(h, d,
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This value is greater the larger the values of K (light speed near unity frequency ratio from zero to infinity.
wings). For instance, when K= 1/4, a value of &= As may be observed later, structural damping will
about 0.1 (graph I–A (g)) brings the minimum near the greatly alter the shape of the curve in this range.
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ljK

(a) (~)’=f$.=–014.

@) (~)’=r$ .=–0.3.

(c)(~y=o; .=–0.2.

(d) (:) ’= Ho; 17=-O.4.

(e)(~) ’=?40;a=-O.3.

(f) (~) ’=xo; .=-0.2.

@ (:)’=% a=–o.4-

(h) (5) ’=)4; a=–o.3.

(i) (~)’=~; .=-0.2,

–Ho; zm=o.2.
~) (~)zfi thissectionof the graph,

the values on the curves
refertoa,not toZa0sinses-
tions (8) to (i).

GraphI-C (a-j).—Theeffectofz.; thefluttercoefficientemimt U.;r<=h. Csse1(h.d.

origin. For K= 1/10, x= must be close to zero (graph The range of most practical importance is, however,
I-A (m)) to cause transition- The transition is critical; the neighborhood of the zero frequency ratio. (For
graph I-A (m) shows that a 2.5-percent change in the wings, the ratio is approximately 1/4.) In this range,
position of the center of gravity changes the flutter the parameter of greatest significance is really the com-
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bination ~+a+xa. In other words, the flutter speed
is very nearly a function of the location of the center of
gravity with respect to the forward quarter-chord posi-
tion and not of the distance relative to the stiflness
axis. Graph I-B (a) shows clearly that the value of a
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light wings (~= 1/3 to 1/5). Graph I–C (d) gives very
normal values of the parameters as used for most wings.
These curves, for a given wing, maybe taken to give the
effect of altitude. Note that, for a given wing with
K= l/S at sea level, K becomes 1/10 at approximately

3
I /

/ 9.=9.’.2

/ I /

I

o .2 .4 .6 .8 10 ~2 O .2 .4 .6 .8 LO 1.20 .2 .4 .6 .8 LO /.2
%A

CiraphI-D (a-c).—Theeffectof structuralfrictfowthe fluttercoefficientagainatthafrequencyratio; K=)fo; a=–O.Z z.=0.1. Cace1 (h,CC).

actually has no influence on the flutter speed. Outside 15,000 feet, with a resulting increase in the flutter
of this range, that is, fOr larger V%hes of 6Jfi/%, the rela- speed under normal circumstances. Nor the case with
tioxdip is less simple. Graph I–B (b) shows the z==O.2 given in graph I–C (d), the increase in the
dependency on the center-of-gravity location for various flutter coefficient is from 1.6 to 1.95, or about 20 percent.
positions of the stiffness axis a. For a constant G, It is possible that, for very light wings, the flutter
that is, for a constant distance between the stifEness speed might decrease with altitude until a certain

2

$%
3

I

o
(1+/0.

(a) .=%. (b) K=HO. 0 (c) K=fio.
QraphI-E (a-e).—Theeffectof radiuaof gyration;thefluttercoefficientagainatthefrqquencyraticua= —0.2,?%= 0.1. Case1 (h,a).

axis and the center of gravity, the flutter speed is altitude is reached. For high values of 1/. (heavy
increased as the stiffness axis (and center of gravity) wings), the flutter speed increases nearly as the square
is moved forward. root of the wing density, l/K.

Graph I–C shows the flutter coefficient plotted against Effect of structural friction g=, gfi.-Graph I–D is
l/K. The normal range of wings is included in the intended to show the effect of the structural friction on
diagram (the heaviest wings to the right). The dia- the critical speed. As the coefficients of friction are
grams are arranged in order of increasing values of increased, there is a definite tendency for the often
(~fi/~a)2 and of a. An interesting result is the existence pronounced minimum flutter speed near @h/wa~l.() to
of a minimum critical speed that falls in the range of disappear and to produce response curves of the type
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obtained for negative value of x=. In the range of most
practical interest (wJcoaeO), the torsional friction is
the more important.

Effect of radius of gyration ra.—Graph I–E is ar-
ranged in conventional order. Note that the flutter
coefficient in the low CLIh/U.%range increases with inc-
rease in the radius of gyration. This increase in the
flutter coefficient does not necessarily correspond to an
increase in the flutter speed; it does if the torsional
frequency w= is kept constant. If the sti~ness is

(Values in the preceding table are given in relation to
the value for K= 1/5, ra2= 1/5, which is the CO,SOof
lowest wing density and smallest radius of gyration.)
The speed corresponding to given stiflness drops if any
mass is added so that T=, the density l/K, or both are
increased. Hence, any mass added not for the purposo
of increasing the stiflness or moving the center of
gravity forward is detrimental.

Flutter frequency .—The flutter frequency is shown in
graph I–F. It is seen, for instance, that for small

@Jut

(a) x.=% a=–O.4.
(c)K=Ho;a=–o.4.

(b)x=% a=–O.2.
(d) K=)’fO;U=-0.2.

GraphI-F (a-d).-Flutter frequerrayratioasdependentonz.a.gainstfrequencyrati~ r,#=%. Caae1(h,a).

kept constant, which means %hat W. is decreased as
I/r=, the flutter speed is actually decreased, as is shown
in the following table.

FLUTTER SPEED FOR CONSTANT TORSIONAL
STIFFNESS

[a=–O.2,Z==O.l,(au/ti=):=O]

\
~ax

K
115 1/4 1/3

I\5 100 97.6 924
l/lo 9L2 SS.6
I/m S4 83.2 E:

values of 6Jh/&, the flutter frequency is around 60
percent of the torsional frequency w.; for higher values
of the flexural frequency, the flutter frequency ap-
proaches or exceeds the torsional. This graph is
primarily of interest in connection with experimental
flutter research.

Coupling factor ~.—Consider a two-dimensional case

of flutter in which only a part of the total length of the
(infinitely long) wing is given the second degree of
freedom. This arrangement, because of the deficient
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coupling, exhibits a figher critic~ Speed. Call the

fraction having both degrees of freedom, & The results
me shown for several values of Z in graph I–G.

Divergence velocity and approximate flutter for-
mula.-It can be shown that the divergence velocity
may be expressed. in nondimensional form as

The divergence velocity vD/bw~is given in graphs
I-A. This velocity is usually higher than the flutter
velocity.

An empirical expression, which is useful in quickly
obtaining the order of magnitude of the flutter speed
for small values of U*/k%and which appears to hold very
well for heavy wings (with K< 1/10) is given by

Graph I-B (a) shows the curve obtained from the
empirical exq?ression (dashed) and a curve based on the
exact values (in full lines).

CASE 2 (FLEXURE-AILERON)

The flutter coe%cient for case 2 is vjbw~. The fre-
quency ratio coJw~ is ordinarily used as abscissa. The
graphs are again arranged in order of increasing wing
density. Two values of the location of the aileron
hinge axis c have been included. The tit value, c=
~, or the aileron chord equal to 25 percent of the total
chord, is intended to represent a wing-aileron combina-
tion; the second value, c=O, or the aileron chord equal

to 50 percent of the total chord represents a stabilizer-
elevator or a fin-rudder combination. Several values
of Z. and r62 and of the damping coefficients g~ and gfi
have been included.

It should be mentioned that ordinarily, as shown in
reference 1, case 2 differs basically from case 1 by the

&cph I-~.—The effect of the emrplingfactorS the flntter coefficientagainstthe
frequency18ti0;K=MO;a= ‘0.2; Z. ‘0.2.

existence of a jlutter range extending between a lower
and an upper flutter speed. This range of flutter can
be reduced or eliminated by various means. It is im-
portant also to notice that, beyond a certain value of
the frequency ratio wfllw~,in fact, for a value slightly
greater than unity, no critical speed exists, since the
critical area does not extend much beyond this point.
The reduction of the center-of-gravity distance from the

o .2 .4 .6 .8 1.0 1.2 1.4 /.6 1.8 0 .2 .4 .6 .8 1.0 L? 1.4 1.6 ~8 2.0
@/~h

(a)Effectofzp; x=% r&=Wo. (h) Effectof z~; .=~o; rp%=~ao.
(c) Effectof 9$and 9A; .=go; r#=?460; 28=?40. (d) EffectOfv2; .=~.~ z,9=%0.

GraphII-A (a-d).-Flutter coefficientagainstfreqnencyratio;c=% Ccse 2 @, h)..
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hinge has the effect of reducing and finally eliminating
the critical flutter area. Internal damping shows the
same general effect. The fact that the aileron extends
effectively over a shorter length is theoretically ex-
pressed by a “coupling factor” & which is the length
of the aileron divided by the total length of the wing
executing deflection. The effect of .$is shown in some
of the graphs.

Effect of frequency wp/coh (c=jf).-Graphs II–A (a)
and (b) show the effect of varying X5 in reducing the
critical area. The effect of damping is shown in graph
II-A (c) and, tially, the effect of Td’ in graph II–A (d).

Effect of center of gravity Zp (c= X).—Graph II–B
shows the flutter coefficient against the center-of-
gravity distance XP, giving, for two vahes of K, the

, ,0. . 7,, ,,. 1 .-T,.
De aemea lor eacn vame 01 me mequency rmlo. lTJN
necessary then to choose the largest frequency ratio or
the smallest unbalance, then to calculate the other
value, and finally to choose the most practical combi-
nation, using a margin of safety.

Effect of radius of gyration rfl (c= X).—Graph II-C
shows, for a typical wing-aileron case, the effect of
changing the radius of gyration for various values of
the frequency ratio.

Effect of frequency uJa~ (c= O).—In the preceding
graphs, the hinge axis was at c=% Graphs II–D,
II–E, and II–F show the results for c= O. The curves
are arranged in order and show the effect of Xd, rf12,
ghj and g~ for ~=% and XO. One curve is also included
for K= Z (graph II-D (d)).

20
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<
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0 .01 .02 .03 ;04 o .01 .02 .03 .04 0 .01- .02 .03 .04 0 .01 .02 .03 .04
x,-

(a) c=% .=% r9=)i20. (b) C=ti; .=% rpz=}fo. (c) C=)4; .=?40; V2=H20. (d) c=?$ .=S rpz=fioo.

GraphII-B (a-d).-Flutter rneficientagainstZPforvariousfrequencyratios. Case2 @,h).

effect of varying the frequency ratio ~p+dh at three
values of r~z. hTote that for large x~ (beyond normal
range) the type of flutter reverts to that of case 1; that
is, the upper flutter speed becomes infinite for a certain
value of x5.

It is important to notice, by considering each curve
in this figure, that. XBmust be decreased below a certain
value, which is rather critical, in order to avoid flutter.
If X8 is larger than this value, the lower flutter speed
remains at a virtually constant, small value. The
frequency ratio exhibits a similar effect; that is, flutter
is eliminated beyond a certain frequency ratio often
greater than unity, whereas for smaller ratios, the
lower flutter speed remains at a low, nearly constant
value. In other words, a critical frequency ratio can
be defied for each value of the unbalance and, in-
versely, a definite critical value of the unbalance can

Effect of center of gravity z~ (c= O).—The figures
are given in graph II–E, arranged as usual. .

8

6

S4
~

2

0 .004 .008 .012 .016 .020 .024 .028 .032 .036
%2

GraphII-C.-Flutter inefficientagainstrszforvariousfrequencyratio%c.=~; w=)4o;
zp- ;60. Case2 (p, h).

Effect of coupling factor (c= O).—In graph II-F the
effect of the coupling factor t is shown for an extreme
case of unbalance (ZPlarge). The superimposed effect

..
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(a) x=%; r@= Bo; zfl=HO, )40. (b) K-% my=% O;z~=HO.
(c) .=%; rez=tio;z~=%o, )40. (d) .=x; rpt=xo.

Graph11-D (a-d).-Flutter coefficientagainstfrequencyratio,showingeffectofz~, g~,and g~;c=O. Ccse2 (B,h).

o .1 .20 .1 .20 .1 0 .1 .2
%

(a) K=W r#=$40. (b) K=% v2=)40. (C) K=$’fO; TS2=%0. (d) .=$% r&=~o.

Graph II-E (a-d).-Flutter wctlicient againstZ.Sfor various frequencyratio$ c=O. Case2 (&h).

407300”41—9
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of damping is shown for the zero frequency ratio.
Notice how the coupling factor (L~O) gradually
eliminates the flutter area.

CASE3 (TORSION-AILERON)

Three graphs, III–A, III-B, and III–C, are presented.
There is a similarity to case 2. Graph III-A shows
how the internal damping increases the lower flutter

g
3

0 .2 .4 .6 .8 Lo 12 1.4 L6 [8 “

GraphII-F.-Effect of couplingfactor/; fluttercoefficientagainstfrequencyratio;
c-m x=% 7s2=?.$;z~=)i (anextremeraseof unbalance). Also effectof frictionfor
u#/wh=o.

speed. Graph III–B represents data taken from an
actual case of a light wing with a smaller aileron.
NTote the striking similarity to case 2. For the value
ZP= 0.0066 (completely unbalanced aileron), UJW.
must be greater than 0.6 to avoid flutter; for the more
normal value xfl=0.002, WJW. need only be Z 0.1.
The flutter area is eliminated by reducing Xfi to a
slightly smaller value.

Case 3 (torsion-aileron) is probably of less practical
importance because the elimination of flutter for case

25

2.0

281.5
3

1.0

.5

0 .25 .50 .75 LOO [25
%/4

Graph III-A.-Effect OffrictiOn~ffi~ents 9., 9s; flutterinefficientagainstfre-
quencyratiw c=o.fi x=}fo; Q=–O.* r~=%; zi3=%0;r#=?4u0. Csse3.

2 ordinarily excludes the possibility of flutter in case
3; but it is noted that, in order to eliminate mass
coupling in the torsion-aileron case, a complete balance
of the aileron in the ordinary sense (x@= O) is not quite
sufhcient. It is actually found in the case of a heavy
wing and no internal friction (with z~= O) that the
flutter speed is low, particularly near WP=w.. Even
a slight amount of friction, however, is suf%cient to
cancel the cause of this flutter. Graph III–C (fairly
heavy wing) shows that, for no friction, a small over-

balance (z@<O) is necessary to eliminate flutter.
For light wings, the effect is less pronounced and
ZP=O is usually sticient. It may be observed from
the original set of equations that true balance against
rotation implies rflz+ (c—a) z~= O.

THREEDEGREESOFFREEDOX

In order to familiarize the reader with the complote
case of three degrees of freedom and its relationship to
the three subcases, a set of typical figures is shown.
The constants used are the same as those in the numeri-
cal example (p. 8) with some additions. Case

2.0

/.5

8
2/.0
3

.5

0 .25 .50
wB/ua

GraphIII-B.-Effect ofzp; flutterCoefocientagainstfrequencyratio; c-O.ti x=X;
a=–O.4; r.~=%; r#=O.0012. Cam3(.x,@).

1 is shown in figure 1 nuder the numerical example.
The flutter coefficient v/bw== 1.542.

Case 2 is shown in figure 5; each part of the figure
refers to different combinations of Zp and m~lmh. No
flutter occurs for the combinations shown in figures
5 (a) and 5 (b) because of the balanced aileron and
none in figure 5 (d) because of the large aileron fre-
quency. For the combination shown in figure 5 (c),
there is a normal range of flutter with two flutter points
shown.

Case 3 is shown in figure 6; each part refers, respec-
tively, to the same aileron parameters used in case 2.
(Note that Wh/f&is % in all cases.) The combinations

50

40

30
SQ
3 2.0

/.0

:005 0 .005 .010 .015 .020 .025 .030
%

GraphIII-C.-Flutter coeflkfentagainstzfl for variousfrequencyratios. c-OJ;
~=~o; r>=%; r~~=~eo;a=-O.4. Cnsri3.

shown in figures 6 (a) and 6 (b) are again stable because
of the aileron mass balance. For the arrangement
shown in figure 6 (d), the aileron frequency is not high
enough to prevent flutter as it did in case 2. Condi-
tions are still worse for the combination shown in
figure 6 (c).

,
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(a) (:)’=lx28=0. ~) (~~=312; r@=O. (c)(~)’=m XB=0.0066. (d) (~)2-3/Z q2=0.0066.

FIGURE5,—Case2. The roots.& of therealand theimaginaryequationsagainatljk. Sameparametersaain nnmericalexampleexceptaaindicated.
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(a) (%)2-O; 2s=0. (b) (:)2 -3/32;ZP=0. (o) (~ )2-0 ;2$=0.0066. (d) (9-3/32 ZP=O.0066.
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FIGURE6.--Case3. The rootsTX of therealand tbe imaginaryeqnatfonsagainatI/k. Sameparameterin numericalexampleexceptasindicated.
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For the case of three degrees of freedom, figure 7
shows the reeult.s arranged in the same order as under
cases 2 and 3. For the conditions given in figures
7 (Q) and 7 (b), flutter existed ordy in case 1. The
flutter point shown is therefore essentially case 1

flutter. The value of the flutter coefficient, however,

TRANSITION TO THREE-DIMENSIONAL FLUTTER
PROBLEMS

The previous theory relates to two-dimensional
flutter and, strictly, to a wing of infinite length. The
second restriction is not very troublesome, the aspect-
ratio, or span, effect being relatively unimportant and

(a) (:)2-OW=0. (h) p)’-wiz,=o. (c) (y4tz#=o.0006. (d, (:)%w=oooso.

FIOUBE7.—Thrcc dwrees Offreedom. The roots mm of therealand theinragincryequationcagcinctl/k. Sameparameterscc in numericzdexampleoxcoptos indicntod.

has actudy decreased from its case 1 value of 1~542 to
0.70 and 0.825, respectively.

For the arrangement shown in figure 7 (d), flutter
exists in cases 1 and 3. Here the ranges completely
merge, indicating stability at only very low speed.
Flutter esiets in all three cases for the combination
shown in figure 7 (c). The case 2 flutter can be rec-

ognized, ahnost unchanged, whiie again the flutter
ranges of case 1 and case 3 have merged, as in figure
7 (d).

Figure 8 has been included to show that there is a
considerable lowering of the flutter speed for low values
of the aileron frequency even though the aileron is
balanced. This condition is probably not of primary
concern because a small amount of friction, particularly
g=, will restore the flutter speed to its full (case 1) value.

that a slight overbalanceIt is to be noted, however,
(%<0) maybe desirable.

by no means as great as the aspect-ratio effect rLsso-
ciated with stationary flows. It may be disregarded

1.

1.

B
2.
3

FIGURE 8.—Flutter coe5cient againct fmquoncy ratio r@.. Tbrco degreesof
freedom. .=0.% a= -0.4; z.=0.Z r#=l/4; c=o.ti Zfl=o; rpy=o.ool%u.-0~-fI.

and tacitly considered as ~ safety factor, since an ftir

speed of the order of a few percent more than that in

two-dimensional flow is necessary to cause flutter.
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Consider the case of a rectangular cantilever wing.
Some authors have attempted a solution on the assump-
tion that the response curves in torsion and deflection
under normal conditions (zero air speed) may be used
in the flutter theory. It is contended that this assump-
tion is false. Several rather interesting experimental
results will be presented in the next section, which
show directly and indirectly that the modes in flutter
differ radically from the ordinary ones. The following
questions arise: (1) Does the wing flutter in the first,.
second, or third, etc., bending “mode”? (2) Are these
modes in any way related to the ordinary types of
vibration modes?

Consider first the case of a very high bending mode.
It is useful to consider the two-dimensional case as
representing the “averages” of parameters and variables
of the three-dimensional case. The variable h now
appearing in the (two-dimensional) equations refers
to the “average” h which approaches zero even though
the local h in the loops is very large. It is, furthermore,
evident that the average curvatures are greater, the
greater the mode. Both these conditions are equiva-
lent to a large coefficient of internal damping, since
the work lost per cycle refers to a very small average h,.

v

FIOUItE 9.—SchcmatIc rlgrrre.for higherader bending mode of cantilever wing
restrainedby wires and with deflectionsin phase.

It is probable that the second “flutter” mode involves
a much higher coefficient of damping and also consid-
erable uncoupling effect. A study of the graphs with
specific reference to the effect of damping shows that
higher flutter modes can be expected only under very
special circumstances. This fact does not mean that
flutter occurs in the lowest (zero airspeed) bending mode.

The bending frequency in flutter of a cantilever beam
is determined by a certain minimum condition. The
wing will, of course, flutter at the lowest speed possible.
It will, therefore, not assume its lowest (stationary)
bending mode but will tend to assume a mode of a
higher frequency. Since this higher frequency tends
to uncouple the h degree of freedom, the actual response
ordinarily happens to be a cross between the first and
the second modes. Large internal friction will tend to
push the response closer to the first mode. The result
is a flutter speed distinctly lower than that calculated
on the basis of the frequency of the ordinary funda-
mental bending mode. The flutter speed calculated
by using the lowest bending frequency is too favorable.
In the case of wings of small internal friction (solid
metal wings), the actual flutter speed is only about 0.9,
the speed calculated on the basis of the lowest bending
frequency. In the case of conventional wings, the

error is apparently in the order of ordy 1 or 2 percent, a
fortunate coincidence because it permits the use of a
small experimental-empirical correction. This point
of view is in harmony with the Rayleigh principle,
which states that any response function whatsoever
~orresponds to a frequency higher than that of the
fundamental.

To recapitulate: The bending jrequeney involved in
!hej?utter of a cantilever wing is greater than that observed
zt zero air speed; the more so, the lower the internal
iamping of the Wing structure.

This interesting phenomenon is demonstrated by the
photograph of the flutter of a uniform cantilever beam
(see fig. 18) presented in the experimental section,
which shows that the maximum amplitude is not at
bhe tip but is rather close to the middle of the span.

Another very convincing experimental proof of this
phenomenon, given in the experimental section of this
paper, is that a counterweight at the tip section in
front of the center of gravity actually lowers the
flutter speed of a uniform cantilever wing. For a
relatively small counterweight, the tip section is beyond
~ node ih the h curve. In this same connection,
mother rather remarkable experiment was made: A
~antilever wing flutters at about 200 miles per hour.
The point where the node of the second bending mode
(at zero air speed) intersects the torsional stifFness
tis was fixed by connecting this point by wires to the
tunnel walls. The wing subsequently fluttered at
150 miles per hour. The flutter stopped when the wire
broke! The explanation is that the bracing wires
“couple” a bending mode that was previously entirely
“uncoupled.” It should be noted that the frequency
~ctually involved in this flutter is agati in excess
of that of the second bending mode (at zero air speed);
large forces are therefore transmitted through the wire
Supports from the walls.

In order to illustrate more convincingly how the sup-
port wires lower the flutter speed, reference is made to
6gure 9, which shows a high-order bending mode of a
wing. If this bending frequency is about equal to the
torsional frequency, the lowest flutter speed is obtained.
When the support wires are removed, the wing will tend
bo vibrate about a fixed mass center line, with the result
that the average h deflection becomes zero and all h
:ouplings disappear. The a moments and the h forces
kansmitted to the support are good measures of what
nay be called the effective values of a and h when the
two-dimensional theory is applied to three-dimensional
cases. For instance, the transmittal of a small h force
to the support indicates that the positive and the nega-
tive h values very nearly cancel. The h effect, although
locally large, may very nearly cancel itself. This fact
does not prevent the use of a certain (small) average or
effective h in the calculations. With no internal fric-
tion, the flutter speed is not changed. As was pointed
out before, the use of the small effective h for higher
modes is, in reality, equivalent to employing a greatly
increased coefficient of internal friction.
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This discussion and associated experiments lead to the
important conclusion: A bracing wire may lower the
critical speed of a cantilever wing or fin. It usually does
lower the critical speed when the internal damping in
the structure is low.

For a rectangular cantilever wing, there is no difficulty
in regard to the other parameters. With the bending
modes considered lmowm, the variables a, & and h were
given simply as average values and used in the two-
dimensional solution. Inspection shows that the flutter
speed of a uniform cantilever wing is essentially that of
the two-dimensional case involtig the same parameters
and the proper frequency ratio.

A cantilever wing of normal tapered shape will next
be considered. It is assumed that there is a similarity
in construction along the span for each cross section.
The mass is put equal to a constant times the square of
the chord; static moments, to the third power; and the
moments of inertia, to the fourth power of the chord.
Further, the air force is proportional to the chord and
the acting moments are proportional to the seco~d
power.

Various weight factors of the form (b/b,) nf(z)dz are
obtained, where j(x) is a weighted wing parameter and
x is measured along the span. If the reference section
is chosen in such a location that, for a particular n=m,

which is always possible, then

Iu other words, the proper choice of a reference section
renders the weight factors of approximately equal magni-
tudes. If the reference section is taken too close to the
tip of the wing, there will be a certain positive correc-
tion; if chosen too close inboard, there will be a nega-
tive correction. The correct value is thus virtually con-
fined between definite limits. The most representative
section will lie close to the three-quarter semispan
location.

h the two-dimensional case, the length along the span
is considered to be equal to unity and this unity is
treated as being large as far as span effects are con-
cerned. If the length is diflerent for the two variables
considered, a slight modification of the theory is neces-
sary. Each length is considered to be long enough to
permit disregard of aspect-ratio corrections for the air
forces.

This sort of consideration is of interest chiefly in the
case of ailerons and tail surfaces. The equation giving
the equilibrium of the ailerons refers only to the length
of the aileron. The included area of the h curve is
sometimes a small fraction of the total area under the
h curve. This fraction will be called 5.

The solution of the deflection-aileron case is given in
reference 1 by

and with the effect of g:

It is noticed that the factor [<1 describes a certain
uncoupling of the system. The calculation of flutter
speed can be performed for any coupling factor t.
Again it should be remembered that the free-vibration
modes are not identical with the flutter modes. A
tendency exists for g to approach unity since the
aileron forces the motion of the wing.

EXPERIMENTAL FLUTTER RESEARCH

GENERAL

The purpose of the experimental resewch w~sj first,

to check the theory as regards accuracy and, second, to

provide a basis for an understa.ndiug of problems met

with in airplanes.

These tests, about one hundred in all, were conducted
in the N. A. C. A. 8-foot high-speed tunnel. (See
fig. 10.) In order to protect the propeller, a heavy
wire screen was inserted in the test section immediately
behind the flutter model. For convenience, models
having a flutter speed below 300 miles per hour were
tested.

The procedure followed was to increase the tunnel
speed slowly until flutter appeared.. If the flutter was
of a violent type, the load was immediately dropped to
save the model. In the tests on ailerons, the lower
branch of the flutter curve was similarly obtained. The
upper end of the range was obtained by the following
method: The aileron was kept in place by restraining
wires attached to its rear end and running across the
tunnel. By manual operation of the wires from the
outside, the arrangement could be conveyed through
the dangerous range; on slackening the wires, the
operator would receive indication of incipient flutter
until the speed had increased above the dangerous
range. When the upper stable region had been
reached, the wires were completely released and the
conventional flutter-test procedure was reversed; that
is, the tunnel speed was slowly decreased until the
violent, flutter appeared. The restraining wires were
then immediately tightened, and the speed was noted.
The effect of the very fine wire was shown to be negli-
gible in the released condition.

DESCRIPTIONOFWINGFLUTTERMODELS

All wings tested were cantilever wings and are based
on the section given in the following table.
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FIGURE10.—Installationof wing 1in S-foothigh-speedtunnel. The stop shown wss usedin only a few initial tests.

AIRFOIL SHAPE USED IN FLUTTER TESTS

.
?iation z (per-
cent chord)

o

;?

7.5
10

E
30
40
50
60

::
90

19$

~

Ordinate II
(maximum

thickrress=l)

o
.460
.Ooo
.740
.820
.Sso
.940
.960

1.coo
.960
.900 I
.780
.620
.440
.240
.132
.020

The frecmencies of the various winm me given in the

cent in the case 1 tests by chordwise cuts. (See figs.
11 to 13.)

In addition to obtaining the flutter speed of the plain
wings, the effects of restraining wires, of mass balancing
counterweights in various locations, and of large nacelles
both at the wing and some distance away from it were
studied. Experimental data are included in table I.
In the aileron tests, the effects of mass balancing, hinge
location, frequency, and friction were investigated.

Wing l.—Wing 1 (see fig. 10) was a rectangular can-
tilever wing model of E-inch duralumin plate of 12-
inch chord by z-inch thickness by a free length of 6
feet 9 inches perforated with closely drilled ~-inch
holes and covered by a $h-inch sheet of duralumin
to give a smooth surface. The constants can be
obtained from data in the experimented table.

main table of experimental data (table I). All section Wings 2, 3, and 4,—Wing~ 2, 3, and 4 repr&ent a

constants were obtained both by calculation and by di- series of cantilever wings of the same root section (l-

rect testing. The basic section has its center of gravity foot chord by % inch thick), the same span (6 feet 9

at 42.5 percent from the leading edge. The stillness inches), but having taper ratios, respectively, of 1:1,
axis is at 32 percent but was artificially put at 30 per- 2:1 and 4:1. (See figs. 11, 12, and 13.) The wings are
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made of durah.unin ad are constructed to give simi-
larity in strength and mass distribution. Note that
the detail at or near the tips is a scaled-down replica
of the detail at the root. The stiflness axis a is put at
30 percent chord or a= —0.4 by means of chordwiee
cuts.

The three types of wing 2 (2A, 2B, and 2C) were so
designated because the first one, 2A, ilnally showed a

FIGURE11.—Rectangulmcantffeverwing 2A. Note cbordwisecutsusedforpurpose
of Iowerfngtorsionalfrequencyand for placingstiffness@ at 30pcrmnt chord
from leadingedge.

crack and had to be replaced with 2B, which is almost
identical. Wing 2B finally broke at the root, was
repaired by shortening it, rmd was used for some tests
under the designation 2C.

Wing 5.—Wing 5 was also a solid duralumin reo
.tangular cantilever wing of l-foot chord, 4-foot length,
and l-inch thickness at the maximum ordinate; it was
used for aileron testing. (See fig. 14) Three ailerons
were tested, 14, 24, and 34 inches long with 2, 3, and
4 hinges, respectively. Most of the tests were per-
formed on the 24-inch aileron (aileron A II).

Tests were made for di.flerent spring-restraints on
the hhge, with a balance counterweight on the out-
board end (fig. 15) and with a special arrangement
permitting the changing of the hinge axis from the
forward edge of the aileron to about 30 percent of the
aileron chord behind the center of gravity.

FIGURE12.—Taperedcantileverwing
Z taper ratio both in chord and
thickrws isM. Dimensional sid-
kXitY of crosssectionsnd crrts.

FIGURE13.—Tapcredcan.
tilover wing 4; tapor
ratio, 4:1.

FIG= M.—Cantilerer wing 5rrccdfor aileron tests.
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Wings 6 and 7.—Wings 6 and 7 are model wings of
normal density built by covering a balsa structure with
j&inch mahogany. Wing 6 has the same external
dimensions as wing 2 (fig. 16). Wing 7 has a root chord
of 18 inches, a maximum thickness of 1.5 -inches, and a
taper ratio of 3:2 (fig. 16). All tapered wings were
tapered equally in chord and thickness.

DISCUSSIONOFEXPERIMENTALRE5ULTS

The scheme already discussed of introducing flutter-
bending modes completely fits the experimental results
into the theoretical picture. Figure 17 shows the
theoretical flutter speed for wings 2A, 2B, 3, and 4
with the experimental points plotted. Wing 2A with

FIOUBIr15.—Wing5with aileron massbalanced by cmrnterweight at outboardend.

R, flutter speed of 202 miles per hour obviously bends in
a “first” flutter mode that approaches the second bend-
ing mode in appearance and frequency (fig. 18). The
flutter frequency calculated on the basis of this bending
mode closely checks the measured flutter frequency
(fig. 19). Wing 3 checks equally well; its bending
frequencies are noted in table I. Wing 4, the most
tapered one, obviously collapsed (fig. 20) in the second
flutter mode. (See fig. 17.) On this assumption, its
experimental flutter speed also fits well in figure 17.

Since the effect of the bending mode was brought so
strongly into the picture, an independent study was
made on the rectangular wing 2B and on the tapered
wing 3 by attaching one point of the torsional axis
rigidly to the tunnel walls by restraining wires. The
results me shown in figures 21 and 22. Note that the
wire attrtched to the tip had no effect on the flutter

SPeed, which fact again tends to prove the contention
mat the flutter be~hg response-is closely related to

FIOURE16.—Rectarrgrdarwooden wing 6 (left) and tapered wooden wing 7 (right);
taper ratio, 32

the second ordina,ry bending mode. Note also that the
observed minimum speeds correspond very nearly to

FIGURE17.—Theoretiealflntter apeedbasedon emrstrmtapertainffg to win5 2A, 2B,
3, and 4. K=$410;a=–o.~ z.=%; r.2=0.31~ &.=3S.8miles per hour. Experi-
mental test points are rdaoahowrr,and flutter modesand freqnem!fesma indicated.

the minimum theoretical speed. (See fig. 17.) Of
practical importance is the fact that a stay near the
root of a wing gave a higher bending frequency and



.. .. –--_ ——— —.. ,— ... . –——----

REPORT A’O .128 685—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

)hGUBE18.—Wing2A in flutter, demonstrnthrgtit flutter mode. Note tendency for node at tip and maximum amplitude nearmiddle.

.
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definitely lowered the critical speed. There exid$ed
points, however, near the middle of both wings for

1.6

1.2

b
<.8
*

.4

0 .2 .4 .6 .8 1.0 /.2 /.4 1.6
ffJh/%

FMUnE10.—Theoretica1flutterfrequenciesbesed on constantsfor wings2,3, and 4
with experimontdy observedvalues for wings2Aand3. K=%o;a= -0.~ z.= }fi
r#=0,3125. CeseI(h,IX),

which the stays mused the flutter speed to attain a
large value. The explanation is that, with this point

fixed, the average h value becomes very small and
the h deflection becomes “ineffective.” A relatively
high flutter speed results.

The matter of .lea~g-edge _counterweightsrh~s been
investigated, M particular” on ting 2C. I?igure 23
shows the effect of moving a counterweight along the
span. The weight has a rather surprising negative
effect near the tip, indicating that, in this case, there
must be an h node inside t,he tip and again substan-
tiating the theory of the flutter modes. 13arther in
along the wing there was an expected increase in the
flutter speed. When all three weights were applied
at the same time, the flutter speed for wing 2C was
increased to 295 miles per hour, which is in good
agreement with the calculated value.

A large nacelle at an inboard position (fig. 24) in-
creased the flutter speed from 202 to 216 miles per hour
when in the forward position and decreased it to 197
when in the rearward position.

FIQWBE20.-TIra affectof violentflutt$r(in saeondmode) on *g 4.
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Large bodies disposed at some distance from the
wing, such as floats, were very detrimental as regards
the critical speed. (See fig. 25.)

Wing 1 showed a flutter speed that is in agreement
with the predicted value within about 1 percent. This
agreement is due to the considerable internal damping
of this wing. Wing 6, a rectangular wing of the same
plan dimensions as wings 1, 2, 3, and 4, but of low
density, showed a flutter speed about 3 percent below
the theoretical value based on the measured parameters
and the lowest ordinary bending mode. This result
indicates that, for damped, low-density structures, the
flutter mode approaches the first bending mode some-
what more than hitherto indicated.

Wing-aileron flutter has been studied on wing 5.
(See fig.14 and table IA.) The theoretical response is

FIGURE 21.—Experiruentulfyobssmed flutterspeed us depending on location of
restruiuiig wire along sxis of wing 2B.

shown with proper constants in figure 26 for the most
representative aileron AII, upon which most of the
tests were made. A ntiber of test points have been
directly plotted in this figure. In order to obtain
internal friction, a lead hinge was used in some tests.
It is rather remarkable how well the theory is re-
affirmed by the test data. Apparently, if all param-
eters could be satisfactorily determined, no flutter
testing would be necessary. Tests in wtich the fige
axis (fig. 27) was changed show the beneficial effect of
decreasing the aerodynamic moment around the hinge.
The lower flutter speed, which is the one of practical
importance, is considerably increased as the hinge
axis is moved backward. This increase is not only a
center-of-gravity effect but is also caused by the de-
crease in the aerodpmznic moment around the hinge.
Note that, as the center of gravity is approached, the
flutter speed rather suddenly becomes i.rdinite.

AIR DAMPING OF FORCED VIBRATIONS

This report has heretofore been concerned with
a study of a border velocity separating stable and

unstable velocity regions. Further light on the whole
matter of flutter is given by a study of the vibration
response of the wing system to impressed forces and
moments, that is, generalizing the point ,of view

I h. I ( I ! h. I 1/ I I

G
2

$ 100

0
Tip Zo 40 60

Distance of resfruining wire from +Ip, in. R~~)
FIGUBE 22.-Experirueutalfyobserved flutter speed es dependingou locution of

restrsirdmgwirealongaxisof wfug3.

from free vibrations to forced vibrations. Instead
of the homogeneous system of equations (A), (B),
and (C) (see Introduction), impressed exciting forces
and moments introduced on the right-hand side of
these equations are considered. In equation (A) a

N#TFF
x .3weights

$100 I I I I I

I I I I I 1 I I

L

..--Tip 1 Roof-~1I

0 10 ZO 30 40 50 60 70 80

4 I I I I I I I I I Ill

Locotion of counterweigh+ from tip, in.
FrQUBE22.-Effect of c0rruterweight2. ~fug 20.

term ikfaeic”t+*’J/Alb2, in equation (B) a term
~Pejt~t~*I)/&fb2, and, in equation (C) a term

POei[uf~$’)/~ are introduced. IIere Ma and MB
are the magnitudes of the sinusoidal impressed torques
in the a and fl degrees of freedom, P. is the magnitude
of the impressed force in the h degree of freedom, a is
the circulaz frequency of the forced vibrations, and the
#’s are certain phase angles.
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FIGURE24.-Na.We on wing 2A. FIGURE25.-Float attached to wing 3.
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FIGURE26.—Theoreticalflutter speed bwd on mnstants pertaining to wing 5with aileron AII. (c=X; zp=O.007.%v2=0.MN9;K=XOK;&Jh=30.5m. P. h.) Experlmontnl
valuesareshown;flutterregionisshaded. Dsshed (theoretical)curveeormspondsto frictioncoefficientoh=0.0125.

CASE 1 (h, a)

hho.
By substitution of a= qei(”~+~o), 7=7 e’(~t~~), ti

h()equations (A) and (C) and solving for ~ ei= and

~ei~o (put M==PO bin), there results

from which both the amplitudes and the phases may be
obtained. The R’s and the -7’s are listed in the appen-
dkx and AIRand Alzrepresent the real and the imaginary
equations listed under the calculation scheme for case 1.

Consider the equation for ~ei~ and denote the
determinant in the numerator by ~h, i. e.,

If the excitation is only in the h degree of freedom
m=O, i. e., there is no impressed torque about the
elastic axis. If a single exciter were placed, for example,

25 percent of the chord in front of the elastic
m= —O.5.

axis,

I 1 I I 1 I I I 1 I I I f

300

Fl-1,“’’’’’”$ F/uffer rave
<200
> .$ i

I , t . 1 I I
I I

Posifion of oileron hinge

FIGUREZ7.-FIutter speed ss depending on position of aileronhinge. Observo that
no flutter existswhen the hingeapproachesthe center-of-grnvitylomtion. Aileron
AVIII.
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~IGURE 2S.-Photograph of modelshowingforeedvibrationresponsein two degrees
of freedomsedependingon airspeed. Note flntterpoint.

It is convenient to define a certain static deflection
h,l, which is the deflection due to force ~0,

h
P“ P“_—

“=C,-1M0,2

Define a,, as the static torsional response to an impressed
moment POb

P,b@t=- C.
Then

Figure 28 is a photograph of a three-dimensional
model of the response ratio hJh~t as a function of the
exciting frequency ratio co/m= and of the speed ratio
v/bwafor a case of deflection-torsion ‘for which a critical
flutter speed exists. In this example, the exciting force
has been assumed to act in the deflection degree of
freedom alone (m= O). At zero speed there exist two
resonant frequencies corresponding to the natural fre-
quencies in the separate degree of freedom. The air
damping due to speed is zero and the response is infinite
at these frequencies. (With friction coefficients ga and
g~, the+ responses are appr~ximately I/g= and l/g~,
respectwely.) As the speed increases, the ak damping
increases and the response diminishes until, along one
frequency branch (the CO.branch) the response becomes
negligibly small. Along the other frequency branch,
however, a minimum response is reached, after which

Velocity ruiio, v/bu.

FIGURE29.-Psak responseridges of figure 28.

Then
hQ_o.),’N, 1
——2X;h.$1

where
,A=~(A1’)’+ (AI~2 .

>

This result gives the steady-state deflection response
&in terms of the static cleflection h., due to an impressed
force or moment. The results of some numerical
calculations will shortly be presented.

The torsional response can be similarly calculated.
Let Na represent the determinant in the numerator of

[6

1.4

/2

8
3

1.0

.8

.6
0246810

I/k
FIGURE30.—The roots of the real and the imaginary equations (pertaiig to ces5

shown in fig. 2s) againstI/k.
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the & damping decreases and the response increases

I
example cited, is shown in figure 30. The value of

(usually rapidly) until the flutter point is reached. The Alr is then obtained for various selected points
critical flutter frequency lies between the two critical (l/k, co/u=) along A,R=O. These values may be em-
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FICWJRE31.—Peak responce
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Velocify ratio, v/&vU

hc]h.tageinct velocity VFM.for the= .=%O; S=–0.2; Z.=OJ; m=ti (~d~.)z= %. The f~ ~ve refem tO
dcched curve, to gh=g.=0.l. Case 1(h,u).

friction eoefflcicntsgA-ga=O; tho

frequencies that exist at zero speed. The two peak ployed to determine A. The numerator is easily
response ridges for this case are shown in figure 29. evaluated for these same values of I/k, co/us. This
These curves, it maybe observed, illustrate the essential process determines the peak response with sufficient

FfGURE 32.-Peak

FFT
--.

‘. .659
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h

I ,.. LI t

655 ‘\ IIlfl ~ I//

I J.uvo I I I I I I I II 1I II I l/u/,/ 1 1 I
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Velocify r ufio, v/b u.

:-respome ridges for three vclues of friction eoefiicientsg.=gA=O, 0.05,and 0.10. (K=xo; a=–o.2; z.=o.l; (ONW.)2=%).

characteristics of the three-dimensional figure. The
procedure of calculation is as follows:

R E 0, A1l= Cl are solved fOr w/w. forThe equations Al
various fixed values of l/k, as already discussed, in
order to locate the flutter point. This plot, for the

Cllso1.

accuracy for a given value of l/k and conversion
to speed is obtained by the relation v/bwa= (u/wJ
(l/k). Such response curves, calculated with and
without the effect of friction, are given in figures 31
and 32.
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FIQUBE34.-Peak responsehojh.tagainst velocity ratio vlbu~fortwo vrdnesof the friction coefficient

One degree of freedom (deflection) .-l?urther light
on the two-degree-of-freedom case, deflection-torsion,
may be obtained by a discussion of the one-degree-of-
freedom cases, deflection alone and torsion alone.

When h=~e@+~’J is substituted in the deflection
equation of motion,

On the introduction of h.,= PO@h (static response ~

deflection to impressed force Po), it follows that

where

()

2
rh= ~

()A,=l+K 1+~G

g~ is the friction coefficient.

Itis observed that the speed is determined by v/Zm,=
(w/coh)(l/k).

The resonance response is obtained by putting
t)/W*lho/h,,l= O and solving for rh. There results

or

gh+l andgh=o.l.~= }fo.

l’he maximum response is then

h() @ti2+Bh2)*
z, ,..=Bh+(lw%

Figures 33 and 34 pertain to this case. The results
may be summarized as follows: The resonant frequency
k practically constant and is approximately u= Uh.
The air damping at the maximum response is propor-

om
tional to Bh=K’~ or, since the frequency is nearly

constant, the air damping at the maximum response
is proportional to m. Away from the resonant fre-
quency, however, the response quickly becomes inde-
pendent of K. No flutter or self-excitation exists in
this case. At zero air speed, the maximum response
rslio is simply l/g~.

One degree of freedom (torsion) .—When a= ~effut+w)
is substituted into the a equation of motion

lw= -
CY&i@aa+{?aa)KC02z ~ t?’~”

On the introduction of a,,=M@= (static response in
torsion to impressed torque hf.), it follows that

C’o r=’ We 2()—.——
CYS, K W (Raa2:Iaa2)~

= [(ra–A.)’;”~=ra+Ba)q* “
where

2

()
r.= ~“

OJ

‘a=1+2[i+a2-(+a2E+(~+a
‘a=:+[~-a-(i+aE-(+
g= is the friction coeiiicient.

407300”—41—10
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Frequency rofio u~%

-Forced vibration responsefor torsion degree of freedom
~r.t=)f,o; g.=0).

(axiz at a=o;

It is observed that the speed is determined by
v/bw.= (u/co.) (l/k). Put b/M’.]%/~J = O. Then

or

FIGURE

2
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r,.= :=
Aa2+B=2

‘A.–g.B.

(:)r;(ia~f$Y
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~GUEE 36.—Pe8kresponsea,+z.1asaimt velocity ratio u/b@.for two vnluw of t~o
friction coefficientLI.=0and u.=0.1. a=0; @.2=%o.

of the torsional axis. The air damping at resonance is
essentially proportional tc K/raa and to the wrtvc-
length parameter l/k. For the quarter-chord position
of the axis, a= — 0.5, the response aJa,, is very similar
to the deflection response LJhs, in the preceding case
(fig. 33). For any position of the torsional axis back
of the quarter-chord point, however, rt peculiar result

70
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37.—Peakresponseuo/a.Iagainstvelocity ratio elk. for two valuesof a (Oand –M and twOV~UfS OfK(!Ao and Moo). Cwe 1 (h, a).

The msximum response is then

()
~o = (A:+B3)~—
% t ~~ Ba+g.A.

Figures 35, 36, and 37 pertain to this case. The
resonant frequency is strongly affected by the position

is obtained. The air damping increases with i.ncreme
in speed and the resonant frequency decreases; but a
speed is ultimately reached where the response increases
again until, at a vanishingly small resonfmt frequency,
the response is very large. In figure 35, which illus-
trates a case for the midchord position of the axis,
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a= O, the peak response occurs at zr/b~.=7.10. This
sort of instability has been called divergence. The
divergence velocity can be easily calculated as follows:

Let u/ua+O, l/k~ ~ in the expression for q/a,~.

Then

Limit a =

()I/k+ co z ,.,

%?’(L)(6%Y
or

CASE 2 @,h)

A study of the response characteristics to forced vi-
brations is also of some interest in the case of flexure-
aileron. The details are omitted here. Two figures
are presented. An illustration showing the peak re-
sponse ratio hO/h.; in this case with and without friction
is presented in figure 38. A response for one degree of
freedom of the aileron alone is shown in figure 39.

REMARKS ON FLUTTER IN AIRPLANES .

WING FLUTTER

The wing may flutter as a whole in torsion-flexure.
This case is the most easily treated. Experience with
models indicates that this flutter speed may be calcu-
lated on the basis of the measured constants with an
accuracy of a few percent. The actual bending fre-
quency involved in flutter is apparently not exactly the
lowest ordinary bending frequency but a slightly
higher value.

Probably the most common type of wing flutter is
case 2 (flexure-aileron). Tlie type,. as well as that

,,!1

Frequency rofio, @JB

FIGUBE39.—For~d vibration response of aileron rdone
againatfreqnency and velocity; friction eoa5cient w =0.

involving torsion-flexure, is evidently symmetrical with
respect to the fuselage. The ailerons would therefore
be in phase and have a frequency considerably in excess
of the tig-bentig frequency. This condition is
favorable. Any slack in the aileron cables, however,
permits a motion that may cause a mild t~e of flutter,
which should not be permitted for too long a time.

A nonsymmetrical aileron motion -would involve a
second bending mode (nonsymmetrical). It is prob-
able that, in most cases, the node would be close to the
middle of the aileron and therefore poorly coupled.

There remains to consider a complete case of flutter
(torsion-flexure-aileron). Apparently cases do exist in
which this type would appear at the lowest speed. The
effect of the additional degree of freedom can probably
be taken care of by a safety factor applied to the flutter
speed obtained for two degrees of freedom. The cal-
culation of the case of three degrees of freedom is per-
fectly straightforward although more lengthy than the
simple cases.

TAILFLUTTER

In regard to tail flutter, the situation is more complex.
The possible combinations are subdivided as follows
into three main groups, which will be separately
analyzed:

(1) Vertical flexure of tail assembly.
(2) Horizontal flexure of tail assembly.
(3) Torsion of tail assembly.
Vertical flexure.-It is possible, in general, to iden-

tify two responses in vertical flexure; one corresponding
to the fundamental bending mode of the fuselage and
the other, to the bending mode of the horizontal-iin
arrangement. The frequency of the fln arrangement is
slightly greater than the one obtained with the rear end
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of the fuselage fixed in space. It is probable that the
fuselage bending mode need not be considered. k any
case, the flutter speed calculated for each of the two cases
will not differ very much because the density involved
is about in the same ratio as the squares of the fre-
quencies involved. Only the vertical fundamental
bending frequency of the horizontal h will therefore be
considered. This bending frequency may couple with
fin toreion and elevator motion. This motion is neces-
sarily symmetrical and simulates the motion of the
main wing system. Since the elevator has no particular
restraint to this motion, it is evident that an unbalanced
elevator is highly undesirable. As in the case of the
wing system, the most frequent cause of flutter is also
the flexme-aileron combination.

Horizontal flexure.-Horizontal flexure affects the
vertical fin or fins and may be separately considered as
a cantilever wing with an aileron. The rudder, which
takes the place of the aileron, has no particular restraint
to this motion ad must therefore be carefully mass
balanced.

Torsion.— Torsion is composed of a relatively lo-w-
frequency type of flutter involving the fuselage and a
higher frequency type involving the fin tips, which may
be considered as fin flexure in opposite phase. This
type of flutter is not common because the great stiilness
of the torque tube prevents its occurrence (P large).
The rudder is affected in the same manner as for
horizontal flexure.

In summary, it maybe said that the expected causes
of flutter are the in-phase motion of the horizontal fins
as flexmre-elevator and the motion of the vertical iin in
flexure with rudder motions.

With two rudders dieposed at the ends of the hori-
zontal fins, care must be taken that the flexure fre-
quency is suiliciently high. The mass of the rudders
at the ends of the horizontal fins also affects the param-
eters used in the fin-stability calculation; that is, the
density of the fins and the radius of gyration are in-
creased. The center-of-gravity location may also be
changed.

GROUND TESTS
DETERhlINATIONOFCENTER-OF-GRAVITYLOCATION

From the theory, it maybe observed that the location
of the torsional st.ifhmss axis is of fairly secondary im-
portance. The location of the center-of-gravity axis, on
the other hand, is of great importance. The application
of a very low-frequency (zero) torque will rotate the
wing around the torsional sti.flhess axis a; the application
of a very high frequency (infln.ity) torque will cause
the mass center line to remain stationary. As the tor-
sional frequency for wings is several times larger than
the lowest bending frequency, it can be shown with all
desired accuracy that the axis observed for the tor-
sional frequency is the center-of-gravity line.

Assume the wing to be vibrating around a ads at a
distance d behind the stiflness axis. The moment of
inertia reduced to the center of gravity is

I= M(T.’–2)V)V

Moving the axis to d increases the moment of inertia to

M(T.2–Za2)b2+M(Z.– d)2b2=M(~a2+d2– 2dz.)b2

The corresponding torsional stiffness is Ca+&Ch.

The frequency is consequently

(C.+d2CJb2
‘2= M(ra2+d2– 2dzJ b’

Then

2 log u=log (oa+d2Ch)b2—log Mb2(r.2+d2—2dxJ

The wing will assume the state of vibration giving the
greatest frequency. By derivation, with respect to d,

doh d–xa
Ca+@Ch–r.2+d2–2dZcc=0

or
doh ~2M

G== .

Then

d=z. 1
1– (@h/@)*

or, with d known,

za=d[l — (uJu)2]sd for Wh/_()

That is, the center-of-gravity axis is slightly ahead of
the dynamic axis (assuming both axes to be normally
behind the stifi%ess axis). If the torsional frequency is
very large, they coincide (d=x.). (If the torsional fre-
quency is very low, d=O, giving the stiffness axis.)

In other words, the center-of-gravity location along a
6nished wing can be determined by establishing the
dynamic torsional axis.

DIMENSIONAL CONSIDERATIONS

Proportionally increasing all dimensions of a wing
while retaining all details lowers the frequencies in in-
verse proportion to the size. The reference speed wb
therefore always remains the same, as do all other pa-
rameters including the wing density. The actual flutter
Speed therefore depends on the shape but not on the size.
[t is important to keep in mind, however, that the
:eference is to wings or tails similar in all respects, In
:edity, a lighter construction is necessarily employed in
,arger wing sizes, resulting in a weaker structure and n
~eneral lowering of the critical flutter speed.

The foregoing considerations are significant in the
testing of models. Thus a true model constructed of
the same material as the full-scale airplane will have
bhe same flutter speed. For testing purposes, it is
very desirable to have a fairly low flutter speed. This
md may be achieved by employing models of special
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materials related to celluloid, which have a value of

~~ nearly five times smaller than that of materials
normally used in airplane construction.

The most desirable condition would be to use a
material with the same density p as the airplane and
with the moduli E and G, say, lln times the original
values. Fortunately, the density of the model wing
can be very simply corrected by using a suitable thick-
ness of the materials. Thus, if the density of the
material used is three times lower than that of the
original, the thickness of the skin and all the internal
members is increased by a factor of 3.

It should be further noted that the model can be
critically checked as to accuracy of reproduction by
direct measurements of its mechanical properties. In
other words, all the parameters, including the reference
quantity ah, are directly measured on the model itself.
The value of ub is usually close to the predicted value.
The important point, however, is that it is not neces-
sary to depend on a predicted theoretical value.

Thus the feasibility of conducting direct flutter tests
on models of actual airplanes or of its component parts
is indicated. Some work of this nature is now being
undertaken. The procedure may be of value in cases
that are diflicult to treat theoretically and should be
of value in accumulating useful experience on special
designs.

GENERAL CONCLUSIONS

1. The two-dimensional theory has been verified
within the limits of error in the determination of the
primary parameters.

2. The most essential three-dimensional effect is the
occurrence of distinct flutter bending modes, which
differ from the ordinary vibration modes in that they
tend to assume a form which approaches the next
higher vibration mode and exhibit a correspondingly
higher frequency. The flutter speed is consequently

lower than that calculated on the basis of the lowest
vibration frequency and the flutter frequency itself is
higher. For ordinary damped structures, this effect
lowers the flutter speed calculated on the basis of the
lowest bending mode by only a few percent.

3. A cantilever wing flutters at a speed calculated
by using the constants for the most representative
section, which is located at approximately three-
quarters of the semispan. .

4. Aspect ratio and structural damping effects tend
to increase the flutter speed by a few percent above
that calculated for infinite aspect ratio and zero internal
damping.

5. The efiect of mass balancing to bring the center
of gravity forward is essentially as predicted by theory.
The effect of nacelles is of lesser importance, but large
weights located at some distance away from the wing
and attached to it show a very detrimental effect on
the flutter speed.

6. Wing-aileron experimental studies show that the
characteristic flutter rang> predicted by the theory
exists and is in substantial agreement with the pre-
dicted values. A decrease in the unbalance and an
increase in the frequency ratio are both beneficial.
There exists, for each value of the unbalance, a certain
critical frequency ratio and, inversely, for each fre-
quency ratio, a certain critical value of the unbalance.

7. The considerable difficulty involved in the deter-
mination of the primary structural parameters includ-
ing the damping is recognized and will constitute one
of the chief problems of future flutter research.

LANGLEY MEMORIAL AERONAUTICALLABORATORY,
NATIONAL ADVISORY COMMITTEEFOR AERONAUTICS,

LANGLEY FIELD, VA., September 22, 1938.
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APPENDIX

LIST OF NOTATION

a, angle of attack (fig. 40).

& aileron angle (fig. 40).

h, vertical distance (fig. 40).

“– $, ~=$, e~..cY—

b,
a,

c,

PI
M,

K=

half chord, used as reference unit length.
coordinate of axis of rotation (torsional axis)
(fig. 40). Location of stiffness axis in percentage
total chord measured from the leading edge is—
~ool+a or a=2 (stiffness asis) _ ~

2 100
coordinate of aileron hinge axis (fig. 40). Location
of aileron hinge axis in percentage total chord

l+C
measured from leading edge is 100T or

~=2 (aileron hinge)_ ~
100

mass of air per unit of volume.
mass of wing per unit span length.’
~pb2
~~ the ratio of the mass of a cylinder of air of a

diameter equal to the chord of. the wing to
the mass of the wing, both taken for equal
length along the span; this ratio may be
expressed as x=O.24 (b2/W) (p/pJ where Wis
weight in pounds per foot span, b is in feet,
and p/POis ratio of air density to standard
air. [The quantity u= W14b2 (weight per
square foot per chord in feet) has been used
by British writers. Thus, K= (0.06/u) (P/Po).]

‘a 1x==&~ ocation of center of gravity of wing-aileron
system measured jrom a (fig. 40); J%, static
moment of wing-aileron per unit span length
referred to a. Location of center of gravity
in percentage total chord measured from the

l+a+z.
leading edge is 100 z or a+z==

2 (center of gravity)_ ~
100

&
xfl=-~ reduced location of center of gravity of aileron

m referred to c (fig. 40). 5’fl, static moment of

aileron per unit span length referred to C.3

d–
r== $7 radius of gyration of wing aileron referred

to a (fig. 40). I., moment of inertia of
wing aileron about the elastic axis per unit
span length.

d~
-~ reduced radius of gyration of aileron referred

‘6= Mb’
to c (fig. 40). IP, moment of inertia of
aileron about c per unit span length.

~NotethatAfrefersto the total wing massand not to the mass of the aileron done.

C=, torsional stifhess of wing around a per unit span
length.

CB, torsional stifl%ess of aileron around c per unit
span length.

C,, stiffness of wing in deflection per unit span length.

d==-J~, natural angular frequency of torsional vibra-
“ tion around a in vacuum (ua=27rja, where

fm is in cycles per second).

[

cfl
—~ natural angular frequency of torsional vibra-

‘P= 1~ tions of afieron about G.

Jc,
Ojh= ~ natural angular frequency of wing in deflect-

ion.

~ez:ng QLAA~I~~idchord Trailing

o edge

-1 -//2 ,—C—=i I

e.g. of uiieron ----~

FrGmrE 40.—Hrdfahordb isused as the rmit length. The positivedfrectlornof a,
B, and h arefndieated by arrows. Note that a is measured from midchcrd rmd
that z. is measuredfrom the elastic a..ispcsitive to the right. Nw noto that .qq
is a %eduwd” parameter and not the actual distancefrom tic hinge to the c. g. of
the aileron.

t, time.
v, speed of forward motion.

vf, flutter or critical speed.
w, circular frequency of wing vibrations.

k=%, reduced frequency =number of waves in the

wake in a distance equal to the semichord x 27r.

l/k, reduced wave length= length of one wave of the
wake in terms of a distance equal to the semi-
chord X27.

F and G, functions of k in table 2.

140
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~aa=Ia.+g.i2.X

~bfl=I@+g~~@

~ch=Ich+gh~hx

quantities A~l, Ael, etc. and &X, QflX, etc. are
defined under the calculation scheme (PP. 5–7). The
The

T’s are listed in table 2. The definiti~& of the T’s
me given in reference 1, page 5, should other values
than those listed in the table be required.
v/bus, flutter-speed coefficient (cases 1 and 3).

v/bco*, flutter-speed coefficient (case 2).
~h/w., frequency ratio (cme 1).
OJf.ofij frequency ratio (case 2).
u~/a., frequency ratio (case 3).

r

T.2
VD=bf&

1/2
; divergence velocity.

Z (1/2)+a

9=, 9B, gh, structural damping coefficients; ~g corre-
sponds approximately to the usual logarithmic
decrement.

Ma, Mfl, magnitude of sinusoidal impressed torques in
the a and (3 degrees of freedom.

PO, magnitude of impressed force in the h degree of
freedom.

+, phase angle.
~, a.~, 130/~,~,hJh.f, peak response for the various

degrees of freedom.
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TABLE 1

k

.
10

!
3
2
1.5
1.2
1.0
.so
.66
.60
.56
.50
.44
.40
.34
.30
.24
.20
.16
.12
.10
.0s
.06
.05
.04
.025
.01
0

F -Q -2Glk

o
.0024S
.0ws6
.01525
.02667
.0577
.094s
.1462
.20Q6
.2912
.3964
.4593
.510il
.602S
.7236
.S250
[.022
L195
L552
LSS6
?.345
1.602
1.446
L010
L753
L220
i.SOJI
;.976
L640
.

o
.010Q12
.027s7
:W16

.2565

.4631

.7361
1.07ss
1.7316
2.6166
3.2156
3.7353
4.7S32
6.3326
7.S125

11.192
14.77s
24.267
36.380
59.5!)2

111.99
166.4
268.9
495.6
727.2

115s.3
3054.4
1964s

.
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TABLE 2

Valuesof T

—+1 –1 –o. 5 0 0.1
I

0.2 0.3

Adz-------------------
T~xI....-..-.---.----.
Tdrr(= -Cpi --------
T,\x-------------------

2$;;::1:;::::::::::::
T,~2r-.--------.--.---
par--------------------— —

–1. GiXml
–L 25000
–1. 00000
–1. 12300

:%

o

–o. 54008
–. 28M2
–. 80460
–. 37922

.94233
1.01125
.2n675

–. 06891

–o. 21321
–. 08191
–. 50#m
–. O&W

.81821

.56S31

.0&31
–. 10610

–O. 16539
–. 05424
–. 43644
–. 03540

.78482

.48813

.05168
–. 10452

–O. 1249[
–. 034Z
–. 373s
–. 0167:

.7477f

.4114(

.037%
-. 0998(

-0.69004
–. 02031
–. 31192
-.00489

.76666

.33s70

.02679
–. 09105

~4+~10
A~,-y ---------- .13783 .31831 .24789 .37426 .39474

B=+:-2’+)- ~W -8=
.35611 .27909 .21187 .16555

B81=------------ 1.50000 .81355 .%416 .21304 .16269 .10565

Ts–T,TIo
Bps---------- 0 .05376 .05782 .05275 .04043 .03922

~ 0.4 0.5 0.6 0.7 0.8 0.9 1.0
—

Tax------------------- –O. 06238 –: 0434 –o. 02322 –: ;3; –o. 0042a -0.00076
Tdz$-------------.--.- –. 01107 –. 00323 ~ IXIX14 –. 00001 ;
T&(= -C#J--2--- –. 25231 –. 19.%6 –. 14228 –. 09406 -: ~g

~~;:::::;::::::::::::
–. 00161 .00421 .00428 .00302 .00144 0

.66075 .60WI .54982 .48050 .39582 .2s231
TII/2r---------.-.--.-- .27629 .m675 .14874 .09712 .05314 . 0W9 :
Tssfix-------------.-.- . o179a .01125 .00636 .00306 .00110 .00020
pax-------------------- –. 08169 –. 06s91 –. 05432 –. 02664 –. 02292 –. 00879 8

T,-I-TIo
A&’y ---------- .40744 .24378 .20843 0

B.@(#~@- := := - :~~ om .mo35 o
.043131 0

z$?,=-= ---------- .06820 .04042 .02118 .00914 .00277

Ts–T~Tm
B~su~ -------- .03156 .02384 .01051 .00999 .00476 .00127 0

0 0
.100 0
.16667 0
.250
.3333.3 8
.61M o
.66067 0
.82323 0

LOOQ o
1.250 0
L 51516 0
L 66667 0
L 78572
2000 :
2.27273 0
2500 0
294118 0

: G7 :
5.owl o
6.256 0
a22333

10.000 8
12.XIO o
16.66607
20.000 :

The expressionsfor the T’s are listed in reference1, page 6.

TABLE 3

Values of Raa’J

Rm=—xc&+Rm”

-045 I -04 I -03
0
–. IXI061840
–. 0017193
–. 0038724
~- OW~8

–. 02i658
–. 043749
: W&8

–. 14966
–. 18260
–. 21098
–. 26779
–. 35102
–. 42981
–. 60814
–. 79566

–L 2871
–L 9086
–3. 0910
–5. 7421
–8. 4837

–13. 635
–25. 006
–36. 608

0
–. 00122
–. 00241
–. 00767
–. 01365
–. 03084
–. 05484
–. 08677
–. 12593
–. 19937
–. 29724
–. 36290
–. 41943
–. 532s7
–. 69838
–. 83.55.5

–1. 21120
–L 5%535
—2.56638
–3. 60774
–6. 17025

–IL 46918
–16. 95014
–27. 2393
~4 ;g

o
–.00240
: ~:;

–.02677
–.06052
–.10779
–.17061
–.24786
–.39291
–.58674
–.71661
–.82866
–L 05209
–1. 38220
–L 69.LW
–2.40192
–3.14680
–5.10072
–7.57776
–12.29364
–22 m22
–33.83136
–54.42160
–99.8S048
–146.27524

–0.2

o
–.00352
–.00980
: Om&

–.oa907
–.15834
–.25152
–.30377
–.5WL3
–.86822

–1. 06113
–L 22769
–L 56125
–2. 05174
–2. 51700
–3. 57222
~: W&

–11:31006
–1s. 37fH35
–24. 22742
–Y). 64366
-81.51210

–149.67813
–219.25620

-0.1

0
–. 0CM60
–.01079
–.02834
–.05140
-.11645
–.20799
–.32952
–.47966
–.76253

–1. 14178
–1. 39047
–L 61652
–2 05795
-2.70670
–3. 32200
–4. 72208
-6.19800

–lo. 07728
–15. 60464
–24. 3S960
–45. 51648
–67. 38704

–10S.52240
–199.38072
–292.13280

0 I
o
–. 00562
–.01666
–.03529
–.06292
–.14268
–.25525
–.40.460
–.56955
–.W660

–1. 40740
–L 72202
–L 09515
—2.64230
–3.34720
-4.11250
–5.351.50
–7.6J3775
-12.621f4
-18.66164
=:; $&&

-84:06150
–135.45250
-248.98S25
–364.90500

I
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TABLE 3—Continued
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-0.45 –0.4 -0.3

.100

.16667

.250

.33333

.500

.66667

.83323
L 000
1.250
L 51516
1.66667
L 7S572
2.Oou
2.27273

i %18
3.33333
4.16667
5.O+Xl
6.250
8.33333

10.000
12.Y30
16.66667
20.000

TABLE 4

Values of Rb/’

Rbfi=—BB1+Rbb”

–0.2 o

,

\Ilk C o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.s 0.9 1.0
—— . .

0
— .

0 0 0
.100 .00123

0 0
,00100

0
.00078

0
.00060

0
.00045

0
; g;

o 0
.16667 .00342 .00267 .00219 .00168

.00021
.00124

.00011 .00005 .00001 0
.250 .0076S .00623 .00493 .0037s

.00057
.00279

.00032
.00196

.00014 .00004 0
.33333 .01367 .01109 .00877 .00673

.00126
.0049s

.00071
.00349

.00032 .0000s o
.550 .03085 .02505 .0197s .01519

.00225
.01122

.00119
.00787 .00507

.00056 .00015
.66667 .05494 .04461 .03525 .02706 .01999 .01402

.00290
; ll;l~:

.00126 .00033 :
.53333 .08647 .0701s .05640 .04250 .03137

.00515
.02194

.00225 .00059
1.000 .12517 .10168 .08015 .06146 .04525

.00806
.03177

.00352 .00092 :.
1.250 .19729 .18000 .12621 .09670

.02048
.07130

.01164
.04590

.00510 .00133 0
1.51516 .26270 .23723 .18699

.03214 .01s2s .00798 .00208 0.14317
1.66667 .35614 .2$%4

.10547
.22733 .17398

.07373 .04744
.12810 .08952

.02690 .01175 .00307 0
1.78572 .41062 .33258 .28195 .20040

.05755
.14750

.03262
.10302

.01425 .00371 0
2.000 .51910 .42022 . 3307s .25290

.06620 .03750 .01627 .00426 0.18595
2.27273 .67692 .64753 .43071

.12980
.32902

.6s335
.24177

.04717
.16357 .10813

.02058 .00525 0
?.500 .82550 .6673$ .52463 .40050 .2S407

. 6+5113
.20488 .13131

.02664 .00691 0
2.Wlls L 15907 .93605 .73500 .56040 .41094 .28588

.07417 .03230 . 00W8
:3.33333 1.50670

.18296 .10318 .04486 .011621.21666 .96284 .72637
4.16667 2.40775

.53204 .36968
1.93923

.23030
1.51852

.13308
1.15435 .84375 .68495 .37303

.05779 .01495 0
5.040 3.53385 2.84190 .20958 .090802.22193 1.68628 1.23036 .85134 . 641s7

.02342 0
6.260 5.65191 4.00926 3.64031 2.08138

.30330 .13137
8.33333

.03260
1.95216 1.34704 .85572 :10.34067 s.28124 6.44720 4.87081

.47862
3.52670

.20644 .05296
2.43454 1.6413510.000 15.14252 12.11112 9.41589 7.10321 5.14958 3.62887

.85928 .36960 .09447 0
2.23667 1.24464 .52443 .13623 0

TABLE &Contiiued

Values of 1#

Ibfl=l/k 165”

\
c

l/k o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Lo
— — . - . . — _

o 0:;229: 0.23827
.100

0.16930 0:;M# 0.07306
.23820 .16925

0.04275 0.02213
.07304 .04273

0:::lf: 0.00283 0.00035 0
.16607 .32273 .23606 .16916 .11462 .07300

.02212
.04269 .02211

.00283 .00035
.250 .32242 .23784 .10699 .11450 .07292 .04260

.00943 .00283 .00035 8
.33333 .3219S .23751 .16874 .11433

.02209
.07280 .04243

.00942
.02205

.00282 .00035 0
.500 .32075 .23658 .16306 .11366 .07250 .04241

.00940 .00282 .00035 0
.66667 .31931 .23548

.02195 .00937 .00280 .00035 0.16727
.83333 .31714

.11331
.23385

.07213 .04220
.16609 .11249 .07161

.02184
.04183

.00931 .00279 .00034 0
L 000 .31483 .23212 .10464 .11163

.02168
.07106

.00925
.04156 .02150

.00277 .00034 0
1.250 .31090 .22919 .16273

.00917
.11019 .07013 .04101

.00274 .00034
8L 51516 .30625 .22572 .16024 .10349

.02121
.06903 .04036

.00904
.02087

.00271 .00034
L 66667 .30343 .22362 .13373 .10746 .06837 .02997

.00890
.02067

.00267 .00033 0
1.78572 .30112 .22190 .15752 .10662 .06783 .03966

.06881 .00264 .00023 0
2.000 .29684 .21876 .15526

.02050
.10509 .06635 . 0390s

; W& .00262 .00033 0
2.27273 .29130 .21462 .15231

.02021
.10307 .06556 .02832

.00257 .00033 0
2.500 .28657 .21112 .14980 .10137

.01981
:0644s .03768

.00845
.01948

.00252 ; ;:0: o
2.94118 .27726 .20423 .14491 .09803 .06235 .03643

.00821 .00249 0
3.33333 .26899 .19813 .14056 .09509

.01883
.06046 .03533

.00603 .00240 .00030 0
4.16667 .25166 . 1%536 .13152 .08894

.01826
.05655 .02305

.00778
.01708

.00232 .00029
5.640 .23522 .17325 .12292 .08315 .05!286 .02089

.00723
.01596

.00217 .00027 !
6.250 .21229 .15642 .11100 .07510 .04775 .02791

.00681 .00203 .00025 0
8.33333 . 17s95 .13197 .09372 .00345

.01442
.040w .02362

; ::3;; . 6+3183 .00023
10.000 .15613 .11525 .08194 .05551

.01220
.02625 .02Q69 .01070

.00155 .60019 :
.00457 .00135 .00017 0
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TABLE I.—EXPERIMENTAL RESULTS OF FLUTTER INVESTIGATION—Continued

145

~ --J
~

~ $ C;$J;XJg : 5~ $ q~~ =
< $j

2 3 g ~ ~~ ~ gj
=3 ~ L. E.) Z- ;

6,

% ~ g ~ 5 W& c= ~ ~
z &

$ :$ g

h
g ~ l%

s ~ g ~~ _
5

Test conditionsandremerke g; g 3
$ ~ 8 5 : g g s

a
g

g g s ~ $ g
*Z ~~ . ~ “

~ = g
a

~ m :- 2 5 ~5 ~ g

~ ~ ~ ~ 3 5 j ~ 5 i i j : j

z k S 2
s s g x 0

~ e r% v 0 m
~

2 4 E s 5
— — . — — — — — — — — — — — . — — — .

11 2C c! 1.40 8.2 22.5 ------ 18.8 ..--.. 42.5 ..-.-. 30.0 -------- ------- Model 213repaked------------------- 20-73 2.133X1O-S------ 220.4 ~
~@ 1.22 7.2 20.8 ------ 16;2 ------ ------ ------ ------ -------- ------- with 3.05-lb.counterweight lin. from 20-74 2.169 ------ 196.8
.,-s tip at L. E.

~+ 1“n 8.2 22.4 . . . . . . 15.8 ------ . . . . . . ------ ------ . ------- ------- Counterweight 13in. from tip at L. E- 20-75 2.152 210.5 E
L 34 8.0 22.2 . . . . . . 16.0 ------ --..-- ------ ------ -------- ------- Counterweight 25in. from tip at L. E. 20-76 2101 ------ 244.6 IG

------

ae ~3g 7.6 ’225 ------ 16.8 ------ ------ ------ ------ -------- ------- counterweight 37in-from tip at L. E- *77 2.119 ------ %5.7 s
7.8 22.0 ------ 17.4 ------ ------ ------ ------ -------- ------- Counterweigbt49 in. from tip at L. E- 20-78 2122 ------ 23’2.2

~: g ;::: 8,0 21.2 ------ lg. 2 ------ ------ ------ ------ -------- . . . . . . . Counterweight 61in. from tip,st L. E- 20-79 2.136
;5 % 1.~

------ 219.8
7.7 19.8 ------ 13.8 ------ ------ ------ ------ -------- ------- with ~eightssirrmltaneouslyat 13fu., 20-61 2-056 ------ 294.3 I

37in., and 61in. from tip.
— — . . — — . . — — — — — — — . . —

~ L 65 6.8 16.5 30.7 29.1 ------ 42.5 420 30.0 -------- 20.48 Plain @pered -g------------------- 20-22 2160 16.4 218.0
Run W22repmtid ------------------- 2J3-082.150 ------ 214.9

12 3 ~- 1.04 5.2 13.1 28.4 8.9 37.8 ------ . . . . . . ------ -------- ------- Nacelfe 6.10lb.; c. g. 3.10h. back of 26-69 2232 ------ 169.2
c. g. of airfoil.

S 9.1 . . . . . . ------ ----- ------- -------- ------- Ns@gfeXplaeed 1.10in. back of c. g. 20-70 2245 ------ 91.0
3
g 8.8 ------ . . . . . ------ ------ --------- ------- Nacefie filaced 2.30in. ahead of e. g... m-n 2.240 8.M
&

90.4
Run M8rep@hd ------------------- 20-72 2.149 14.0 213.3

— — ._ — — . — — —
2.07 6,0 13.3 24.0 36.2 ----- - 41.2 41.5 ----- -------- - 16.88 Violent flutter suddenly. Wing bent 20-67 2174

: : & “_ — — — — . . . — . —

1 :

------ 203.9 2*
out of shape. Fig. 26. h“

12 3 ~ 1.05 6.8 16.S 30.7 29.1 ----- - 42.5 42.0 ----- -------- - 20.48 Restmirdng wires 59 in. from tip at 20-39 2.137 ------ 211.1
stiffnessaxis.~-

Sameexcept wires 2in. aheadof stiff- 20-60 2.26Q ------ 204.4~ neesaxis.
E Same exeopt wires 4 in. back of stiff- 26-91 -.-.------- ------ -------
~ nes.sasis. N

Res;si~m~fres 40 fn. frem tip at 26-93 2234
B

------ 155.8 I&

Restraining w&s 17 in. f.mm tip at 26-64 2.229
~

------ 1529
stiffnessaxis.

Restraining wires 1 in. from tip at 20-95 2182 .---.- 21L4
stifiess axis:

Resti%ming wues 27 in. from tip at 20-96 2202 ------ 200.8
stffiess axis.

— — — — — — — — — — .
x x ----- . 2.30 12.8 31.2 ----- . 19.2 ----- . 42.5 45.2 ----- -------- - 3.45 Rectsn@ar wooden modefi 81-in. 20-32 2.26s ------ 73.8

span.
— — — — — — — — — — — . ——
16 7 . ..-. - 4.92 25.0 67.2 ----- - 35.8 ----- . 42.5 43.9 ----- -------- -x Tapered wooden model; completely 20-62 2199 205.6

deetroyad by violent flutter.
----.-
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TABLE IA.-WING-AILERON FLUTTER TESTS

First Aileron Lower
wing Aileron b&- ,&& r:;&~ oritical %%ring Aileron(seat3g.14) w;;~ W$gy (~. (og-zodel Test conditionsandremarks ~m Air#pm- Velocity Air dens- ~e,oo,ty

:::/ Cl& ‘ion)
(r&p. ity,p (y)p,

. — . .

6 AID--------- 44.84 0. 9.5Q 10.68 0 0.0019 Aileron with 3frw hfnge-$----------------------- g:- ; y8xlcr-Z
AV-______--- -------- .618 ------. 0

53.0 . . . . . . . . . . . . . . . . . . . . .

AII____________ -------- .950 ------- 5.75 :::::::: -GGiG-G’fLi;A~G-:-::::::: :::::::::::::::::::: 20-38 2:273
50.7 . . . . . . . . . . . . . . . . . . . . .

AV__________ -------- .618 ------- 7.91 -------- -------------------------------------------------- 20-39 2.271
50.4 ------------ . . . . . . . . .

AII___________ -------- .950 ------- 12.5 -------- -------------------------------------------------- W-10 2.269
42.4 . . . . . . . . . . . . . . . . . . . . .

AII------------ -------- -------- ------- 8.% -------- Th@etf@readts for eilerOn~ shownin fig. 26. W-41 2.306
76.8 . . . . . . . . . . . . . . . . . . . . .

AII--------------- -------- -------- ------- 11.0 -------- -------------------------------------------------- W-42 2.301
44.8 . . . . . . . . . . . . . . . . . . . . .
65.4 . . . . . . . . . . . . . . . . . . . . .

AII--------------- -------- -------- ------- 11.0 -------- -------------------------------------------------- 20-43 ------------ -------- 2.240xlo-~ 147.0
AII----------- -------- -------- ------- 12.5 -------- -------------------------------------------------- W-44 ------------ ._6i-i- -~=wo
AII-------------- -------- -------- ------- 13.1 -------- -------------------------------------------------- 20-45 2.259

Ml. o

AII-------------- -------- -------- ------- 9.67 -------- -------------------------------------------------- 2Q-46 2.!283
. . . . . . . . . . . . . . . . . .

67:4 2.236
AII-------------- -------- -------- ------- 9.17 -------- -------------------------------------------------- 20-47 2.268

Iw. a

AII-------------- -------- -------- ------- 5.75 -------- -------------------------------------------------- 20-48 2.24.5
50.0 2.162 193.0
52.8 2.165

AIL--------------- -------- -------- ------- 0 --------
lW. 9

~ng~frm -------------------------------------- 20-49 2.242
AII____________ -------- -------- ------- 13.3 -------- -------------------------------------------------- W-w 2.242

68.3 2.138 22s.1

AIL----------- -------- -------- ------- 10.8 -------- -------------------------------------------------- 20-51 2.240
60.3 2.200 126,1
65.0 2.190

AII----------- -------- -------- ------- 0 --------
140.0

3fre8h!ngeswith eileroncountenveight, 0.557 20-52 No flutter

AII__________ -------- -->----- ------- 0 -------- Cib&%~5&t,0.4521b ------------------------- 20-53 No flutter
AII----------- -------- -------- ------- 0 -------- Counterweight, 0.3461b. . ..--. ___________ 20-54 2.249 75.2 2,243
AII------------- -------- -------- ------- 0 --------

206.1
Counterweight, 0.3981b------------------------- w-55 2.243

AII----------- -------- -------- ------- 3.00 -------- -----do ------------------------------------------- 20-56 2.243
w. 5 2,173 107.8

AII__________ -------- -------- ------- 6.92 -------- ..---do ------------------------------------------- w-57 2.262
w. 9 2.103 167.3

AI-------------- --------
62.8 2.218 147.1

.567 ------- 0 --------
AVII __________ .-------

2fmetig -------------------------------------- 20-38 2.262 05.3 2.163 218.7
.300 ------- 0 --------

AIIL ________ -------- 1.43 ------- 0 . . ..--..
3 free Mug=------------------------------------- 20-59 2.2-59 57.8 2,221 105.7

AIII ------------- -------- -------- ------- 0 --------
4free WmgH------------------------------------- 20-60 2.250 84).2 2.161 ;:;
4frmhingeswith Iendfordemping ------------- 20-61 2.251 52.2 2.106

AIII _________ -------- -------- ------- 0 .------- -----do ------------------------------------------- 20-03 2.261 78.0 2.171 166:5
AIII_.._..__._ .------- -------- ------- 0 -------- --.-.do ------------------------------------------- 20-04 2.255
AHI___________ -------- -------- ------- 4.67 -------- .----do ------------------------------------------- W-65 2.259

;;: : M& ~:

AIII ________ -------- ---.---- ------- 6.00 -------- ----.do ------------------------------------------- 20-66 2.260 63:8 2:210 161:0
AVIII. --...------- -------- 2.01 ------- 0 -..---.-
AVIII . ..__.__- -------. . . . . ---- ------- 0

Hinge-pfn position veried es shown in fig. 27..-. 20-S3 2.285 04.4 2.178 230.6

AVIII _______ -------- -------- ------- 0
-------- -----do ------------------------------------------- 20-84 2.281 03.6 2.143 200.0

AVIII ________ ---.---- -------- ------- 0
-------. ---. -do------------------------------------------- W-86 No flutter
-------- -.-..do ------------------------------------------- 20-67 2.250

AVIII _______ -------- .-----.- ------. 7.00 .------- -----do ------------------------------------------- ‘20-8s 2.259
8s.6 2.098 200.8
41.1 2.130 264.1

-—


